Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
PLoS Comput Biol ; 20(7): e1012273, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39047032

ABSTRACT

Human decision making is accompanied by a sense of confidence. According to Bayesian decision theory, confidence reflects the learned probability of making a correct response, given available data (e.g., accumulated stimulus evidence and response time). Although optimal, independently learning these probabilities for all possible data combinations is computationally intractable. Here, we describe a novel model of confidence implementing a low-dimensional approximation of this optimal yet intractable solution. This model allows efficient estimation of confidence, while at the same time accounting for idiosyncrasies, different kinds of biases and deviation from the optimal probability correct. Our model dissociates confidence biases resulting from the estimate of the reliability of evidence by individuals (captured by parameter α), from confidence biases resulting from general stimulus independent under and overconfidence (captured by parameter ß). We provide empirical evidence that this model accurately fits both choice data (accuracy, response time) and trial-by-trial confidence ratings simultaneously. Finally, we test and empirically validate two novel predictions of the model, namely that 1) changes in confidence can be independent of performance and 2) selectively manipulating each parameter of our model leads to distinct patterns of confidence judgments. As a tractable and flexible account of the computation of confidence, our model offers a clear framework to interpret and further resolve different forms of confidence biases.


Subject(s)
Bayes Theorem , Decision Making , Humans , Decision Making/physiology , Computational Biology/methods , Male , Female , Adult , Reaction Time/physiology , Young Adult , Models, Psychological , Probability
2.
Psychol Rev ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619465

ABSTRACT

The Rescorla-Wagner rule remains the most popular tool to describe human behavior in reinforcement learning tasks. Nevertheless, it cannot fit human learning in complex environments. Previous work proposed several hierarchical extensions of this learning rule. However, it remains unclear when a flat (nonhierarchical) versus a hierarchical strategy is adaptive, or when it is implemented by humans. To address this question, current work applies a nested modeling approach to evaluate multiple models in multiple reinforcement learning environments both computationally (which approach performs best) and empirically (which approach fits human data best). We consider 10 empirical data sets (N = 407) divided over three reinforcement learning environments. Our results demonstrate that different environments are best solved with different learning strategies; and that humans adaptively select the learning strategy that allows best performance. Specifically, while flat learning fitted best in less complex stable learning environments, humans employed more hierarchically complex models in more complex environments. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
PLoS Comput Biol ; 20(3): e1011978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517916

ABSTRACT

People often have to switch back and forth between different environments that come with different problems and volatilities. While volatile environments require fast learning (i.e., high learning rates), stable environments call for lower learning rates. Previous studies have shown that people adapt their learning rates, but it remains unclear whether they can also learn about environment-specific learning rates, and instantaneously retrieve them when revisiting environments. Here, using optimality simulations and hierarchical Bayesian analyses across three experiments, we show that people can learn to use different learning rates when switching back and forth between two different environments. We even observe a signature of these environment-specific learning rates when the volatility of both environments is suddenly the same. We conclude that humans can flexibly adapt and learn to associate different learning rates to different environments, offering important insights for developing theories of meta-learning and context-specific control.


Subject(s)
Adaptation, Physiological , Learning , Humans , Bayes Theorem
4.
Psychol Sci ; 35(4): 358-375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427319

ABSTRACT

Humans differ vastly in the confidence they assign to decisions. Although such under- and overconfidence relate to fundamental life outcomes, a computational account specifying the underlying mechanisms is currently lacking. We propose that prior beliefs in the ability to perform a task explain confidence differences across participants and tasks, despite similar performance. In two perceptual decision-making experiments, we show that manipulating prior beliefs about performance during training causally influences confidence in healthy adults (N = 50 each; Experiment 1: 8 men, one nonbinary; Experiment 2: 5 men) during a test phase, despite unaffected objective performance. This is true when prior beliefs are induced via manipulated comparative feedback and via manipulated training-phase difficulty. Our results were accounted for within an accumulation-to-bound model, explicitly modeling prior beliefs on the basis of earlier task exposure. Decision confidence is quantified as the probability of being correct conditional on prior beliefs, causing under- or overconfidence. We provide a fundamental mechanistic insight into the computations underlying under- and overconfidence.


Subject(s)
Decision Making , Adult , Male , Humans
5.
Behav Res Methods ; 56(3): 2537-2548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37369937

ABSTRACT

How much data are needed to obtain useful parameter estimations from a computational model? The standard approach to address this question is to carry out a goodness-of-recovery study. Here, the correlation between individual-participant true and estimated parameter values determines when a sample size is large enough. However, depending on one's research question, this approach may be suboptimal, potentially leading to sample sizes that are either too small (underpowered) or too large (overcostly or unfeasible). In this paper, we formulate a generalized concept of statistical power and use this to propose a novel approach toward determining how much data is needed to obtain useful parameter estimates from a computational model. We describe a Python-based toolbox (COMPASS) that allows one to determine how many participants are needed to fit one specific computational model, namely the Rescorla-Wagner model of learning and decision-making. Simulations revealed that a high number of trials per person (more than the number of persons) are a prerequisite for high-powered studies in this particular setting.


Subject(s)
Sample Size , Humans , Computer Simulation
6.
J Exp Psychol Gen ; 153(2): 328-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37870814

ABSTRACT

Cognitive flexibility refers to a mental state that allows efficient switching between tasks. While deciding to be flexible is often ascribed to a strategic resource-intensive executive process, people may also simply use their environment to trigger different states of cognitive flexibility. We developed a paradigm where participants were exposed to two environments with different task-switching probabilities, followed by a probe phase to test the impact of environmental cues. Our results show that people were more efficient at switching in a high-switch environment. Critically, we observe environment-specific triggering of cognitive flexibility after a 4-day training period (Experiment 2, N = 51), but not after a 1-day training period (Experiment 1, N = 52). Together, these findings suggest that people can associate the need for cognitive flexibility with their environment, providing an environmental triggering mechanism for cognitive control. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Cues , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Learning , Cognition
7.
Brain Cogn ; 172: 106088, 2023 11.
Article in English | MEDLINE | ID: mdl-37783018

ABSTRACT

Higher executive control capacity allows people to appropriately evaluate risk and avoid both excessive risk aversion and excessive risk-taking. The neural mechanisms underlying this relationship between executive function and risk taking are still unknown. We used voxel-based morphometry (VBM) analysis combined with resting-state functional connectivity (rs-FC) to evaluate how one component of executive function, model-based learning, relates to risk taking. We measured individuals' use of the model-based learning system with the two-step task, and risk taking with the Balloon Analogue Risk Task. Behavioral results indicated that risk taking was positively correlated with the model-based weighting parameter ω. The VBM results showed a positive association between model-based learning and gray matter volume in the right cerebellum (RCere) and left inferior parietal lobule (LIPL). Functional connectivity results suggested that the coupling between RCere and the left caudate (LCAU) was correlated with both model-based learning and risk taking. Mediation analysis indicated that RCere-LCAU functional connectivity completely mediated the effect of model-based learning on risk taking. These results indicate that learners who favor model-based strategies also engage in more appropriate risky behaviors through interactions between reward-based learning, error-based learning and executive control subserved by a caudate, cerebellar and parietal network.


Subject(s)
Cerebellum , Gray Matter , Humans , Cerebellum/diagnostic imaging , Gray Matter/diagnostic imaging , Executive Function , Parietal Lobe , Risk-Taking , Magnetic Resonance Imaging/methods
8.
Cereb Cortex ; 33(8): 4421-4431, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36089836

ABSTRACT

Considerable evidence highlights the dorsolateral prefrontal cortex (DLPFC) as a key region for hierarchical (i.e. multilevel) learning. In a previous electroencephalography (EEG) study, we found that the low-level prediction errors were encoded by frontal theta oscillations (4-7 Hz), centered on right DLPFC (rDLPFC). However, the causal relationship between frontal theta oscillations and hierarchical learning remains poorly understood. To investigate this question, in the current study, participants received theta (6 Hz) and sham high-definition transcranial alternating current stimulation (HD-tACS) over the rDLPFC while performing the probabilistic reversal learning task. Behaviorally, theta tACS induced a significant reduction in accuracy for the stable environment, but not for the volatile environment, relative to the sham condition. Computationally, we implemented a combination of a hierarchical Bayesian learning and a decision model. Theta tACS induced a significant increase in low-level (i.e. probability-level) learning rate and uncertainty of low-level estimation relative to sham condition. Instead, the temperature parameter of the decision model, which represents (inverse) decision noise, was not significantly altered due to theta stimulation. These results indicate that theta frequency may modulate the (low-level) learning rate. Furthermore, environmental features (e.g. its stability) may determine whether learning is optimized as a result.


Subject(s)
Deep Learning , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Bayes Theorem , Reversal Learning , Electroencephalography/methods
9.
J Cogn ; 5(1): 44, 2022.
Article in English | MEDLINE | ID: mdl-36246581

ABSTRACT

Complex cognition requires binding together of stimulus, action, and other features, across different time scales. Several implementations of such binding have been proposed in the literature, most prominently synaptic binding (learning) and synchronization. Biologically plausible accounts of how these different types of binding interact in the human brain are still lacking. To this end, we adopt a computational approach to investigate the impact of learning and synchronization on both behavioral (reaction time, error rate) and neural (θ power) measures. We train four models varying in their ability to learn and synchronize for an extended period of time on three seminal action control paradigms varying in difficulty. Learning, but not synchronization, proved essential for behavioral improvement. Synchronization however boosts performance of difficult tasks, avoiding the computational pitfalls of catastrophic interference. At the neural level, θ power decreases with practice but increases with task difficulty. Our simulation results bring new insights in how different types of binding interact in different types of tasks, and how this is translated in both behavioral and neural metrics.

10.
PLoS Comput Biol ; 18(10): e1009945, 2022 10.
Article in English | MEDLINE | ID: mdl-36215326

ABSTRACT

Obsessive-compulsive disorder (OCD) is characterized by uncontrollable repetitive actions thought to rely on abnormalities within fundamental instrumental learning systems. We investigated cognitive and computational mechanisms underlying Pavlovian biases on instrumental behavior in both clinical OCD patients and healthy controls using a Pavlovian-Instrumental Transfer (PIT) task. PIT is typically evidenced by increased responding in the presence of a positive (previously rewarded) Pavlovian cue, and reduced responding in the presence of a negative cue. Thirty OCD patients and thirty-one healthy controls completed the Pavlovian Instrumental Transfer test, which included instrumental training, Pavlovian training for positive, negative and neutral cues, and a PIT phase in which participants performed the instrumental task in the presence of the Pavlovian cues. Modified Rescorla-Wagner models were fitted to trial-by-trial data of participants to estimate underlying computational mechanism and quantify individual differences during training and transfer stages. Bayesian hierarchical methods were used to estimate free parameters and compare the models. Behavioral and computational results indicated a weaker Pavlovian influence on instrumental behavior in OCD patients than in HC, especially for negative Pavlovian cues. Our results contrast with the increased PIT effects reported for another set of disorders characterized by compulsivity, substance use disorders, in which PIT is enhanced. A possible reason for the reduced PIT in OCD may be impairment in using the contextual information provided by the cues to appropriately adjust behavior, especially when inhibiting responding when a negative cue is present. This study provides deeper insight into our understanding of deficits in OCD from the perspective of Pavlovian influences on instrumental behavior and may have implications for OCD treatment modalities focused on reducing compulsive behaviors.


Subject(s)
Conditioning, Operant , Obsessive-Compulsive Disorder , Humans , Bayes Theorem , Reward , Cues
11.
Nat Commun ; 13(1): 4208, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864100

ABSTRACT

Humans differ in their capability to judge choice accuracy via confidence judgments. Popular signal detection theoretic measures of metacognition, such as M-ratio, do not consider the dynamics of decision making. This can be problematic if response caution is shifted to alter the tradeoff between speed and accuracy. Such shifts could induce unaccounted-for sources of variation in the assessment of metacognition. Instead, evidence accumulation frameworks consider decision making, including the computation of confidence, as a dynamic process unfolding over time. Using simulations, we show a relation between response caution and M-ratio. We then show the same pattern in human participants explicitly instructed to focus on speed or accuracy. Finally, this association between M-ratio and response caution is also present across four datasets without any reference towards speed. In contrast, when data are analyzed with a dynamic measure of metacognition, v-ratio, there is no effect of speed-accuracy tradeoff.


Subject(s)
Metacognition , Decision Making/physiology , Humans , Judgment/physiology , Metacognition/physiology
12.
Neuroimage Clin ; 35: 103083, 2022.
Article in English | MEDLINE | ID: mdl-35717885

ABSTRACT

BACKGROUND: Compulsive behaviors in obsessive-compulsive disorder (OCD) have been suggested to result from an imbalance in cortico-striatal connectivity. However, the nature of this impairment, the relative involvement of different striatal areas, their imbalance in genetically related but unimpaired individuals, and their relationship with cognitive dysfunction in OCD patients, remain unknown. METHODS: In the current study, striatal (i.e., caudate and putamen) whole-brain connectivity was computed in a sample of OCD patients (OCD, n = 62), unaffected first-degree relatives (UFDR, n = 53) and healthy controls (HC, n = 73) by ROI-based resting-state functional magnetic resonance imaging (rs-fMRI). A behavioral task switch paradigm outside of the scanner was also performed to measure cognitive flexibility in OCD patients. RESULTS: There were significantly increased strengths (Z-transformed Pearson correlation coefficient) in caudate connectivity in OCD patients. A significant correlation between the two types of connectivity strengths in the relevant regions was observed only in the OCD patient group. Furthermore, the caudate connectivity of patients was negatively associated with their task-switch performance. CONCLUSIONS: The imbalance between the caudate and putamen connectivity, arising from the abnormal increase of caudate activity, may serve as a clinical characteristic for obsessive-compulsive disorder.


Subject(s)
Obsessive-Compulsive Disorder , Putamen , Brain Mapping , Corpus Striatum , Humans , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Obsessive-Compulsive Disorder/diagnostic imaging , Putamen/diagnostic imaging
13.
Nat Hum Behav ; 6(7): 1000-1013, 2022 07.
Article in English | MEDLINE | ID: mdl-35449299

ABSTRACT

Cognitive control allows to flexibly guide behaviour in a complex and ever-changing environment. It is supported by theta band (4-7 Hz) neural oscillations that coordinate distant neural populations. However, little is known about the precise neural mechanisms permitting such flexible control. Most research has focused on theta amplitude, showing that it increases when control is needed, but a second essential aspect of theta oscillations, their peak frequency, has mostly been overlooked. Here, using computational modelling and behavioural and electrophysiological recordings, in three independent datasets, we show that theta oscillations adaptively shift towards optimal frequency depending on task demands. We provide evidence that theta frequency balances reliable set-up of task representation and gating of task-relevant sensory and motor information and that this frequency shift predicts behavioural performance. Our study presents a mechanism supporting flexible control and calls for a reevaluation of the mechanistic role of theta oscillations in adaptive behaviour.


Subject(s)
Cognition , Theta Rhythm , Cognition/physiology , Humans , Theta Rhythm/physiology
14.
PLoS Comput Biol ; 18(2): e1009854, 2022 02.
Article in English | MEDLINE | ID: mdl-35108283

ABSTRACT

Adaptive sequential behavior is a hallmark of human cognition. In particular, humans can learn to produce precise spatiotemporal sequences given a certain context. For instance, musicians can not only reproduce learned action sequences in a context-dependent manner, they can also quickly and flexibly reapply them in any desired tempo or rhythm without overwriting previous learning. Existing neural network models fail to account for these properties. We argue that this limitation emerges from the fact that sequence information (i.e., the position of the action) and timing (i.e., the moment of response execution) are typically stored in the same neural network weights. Here, we augment a biologically plausible recurrent neural network of cortical dynamics to include a basal ganglia-thalamic module which uses reinforcement learning to dynamically modulate action. This "associative cluster-dependent chain" (ACDC) model modularly stores sequence and timing information in distinct loci of the network. This feature increases computational power and allows ACDC to display a wide range of temporal properties (e.g., multiple sequences, temporal shifting, rescaling, and compositionality), while still accounting for several behavioral and neurophysiological empirical observations. Finally, we apply this ACDC network to show how it can learn the famous "Thunderstruck" song intro and then flexibly play it in a "bossa nova" rhythm without further training.


Subject(s)
Models, Theoretical , Neural Networks, Computer
15.
Neural Netw ; 146: 256-271, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34915411

ABSTRACT

Human adaptive behavior requires continually learning and performing a wide variety of tasks, often with very little practice. To accomplish this, it is crucial to separate neural representations of different tasks in order to avoid interference. At the same time, sharing neural representations supports generalization and allows faster learning. Therefore, a crucial challenge is to find an optimal balance between shared versus separated representations. Typically, models of human cognition employ top-down modulatory signals to separate task representations, but there exist surprisingly little systematic computational investigations of how such modulation is best implemented. We identify and systematically evaluate two crucial features of modulatory signals. First, top-down input can be processed in an additive or multiplicative manner. Second, the modulatory signals can be adaptive (learned) or non-adaptive (random). We cross these two features, resulting in four modulation networks which are tested on a variety of input datasets and tasks with different degrees of stimulus-action mapping overlap. The multiplicative adaptive modulation network outperforms all other networks in terms of accuracy. Moreover, this network develops hidden units that optimally share representations between tasks. Specifically, different than the binary approach of currently popular latent state models, it exploits partial overlap between tasks.


Subject(s)
Cognition , Learning , Humans
16.
Cereb Cortex ; 32(3): 626-639, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34339505

ABSTRACT

Human perception and learning is thought to rely on a hierarchical generative model that is continuously updated via precision-weighted prediction errors (pwPEs). However, the neural basis of such cognitive process and how it unfolds during decision-making remain poorly understood. To investigate this question, we combined a hierarchical Bayesian model (i.e., Hierarchical Gaussian Filter [HGF]) with electroencephalography (EEG), while participants performed a probabilistic reversal learning task in alternatingly stable and volatile environments. Behaviorally, the HGF fitted significantly better than two control, nonhierarchical, models. Neurally, low-level and high-level pwPEs were independently encoded by the P300 component. Low-level pwPEs were reflected in the theta (4-8 Hz) frequency band, but high-level pwPEs were not. Furthermore, the expressions of high-level pwPEs were stronger for participants with better HGF fit. These results indicate that the brain employs hierarchical learning and encodes both low- and high-level learning signals separately and adaptively.


Subject(s)
Deep Learning , Bayes Theorem , Brain/physiology , Electroencephalography , Humans , Reversal Learning
17.
Top Cogn Sci ; 14(2): 223-240, 2022 04.
Article in English | MEDLINE | ID: mdl-33836116

ABSTRACT

Routine action sequences can share a great deal of similarity in terms of their stimulus response mappings. As a consequence, their correct execution relies crucially on the ability to preserve contextual and temporal information. However, there are few empirical studies on the neural mechanism and the brain areas maintaining such information. To address this gap in the literature, we recently recorded the blood-oxygen level dependent (BOLD) response in a newly developed coffee-tea making task. The task involves the execution of four action sequences that each comprise six consecutive decision states, which allows for examining the maintenance of contextual and temporal information. Here, we report a reanalysis of this dataset using a data-driven approach, namely multivariate pattern analysis, that examines context-dependent neural activity across several predefined regions of interest. Results highlight involvement of the inferior-temporal gyrus and lateral prefrontal cortex in maintaining temporal and contextual information for the execution of hierarchically organized action sequences. Furthermore, temporal information seems to be more strongly encoded in areas over the left hemisphere.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Prefrontal Cortex/physiology
18.
Neuroimage Clin ; 32: 102808, 2021.
Article in English | MEDLINE | ID: mdl-34500426

ABSTRACT

Recent studies suggested that the rich club organization promoting global brain communication and integration of information, may be abnormally increased in obsessive-compulsive disorder (OCD). However, the structural and functional basis of this organization is still not very clear. Given the heritability of OCD, as suggested by previous family-based studies, we hypothesize that aberrant rich club organization may be a trait marker for OCD. In the present study, 32 patients with OCD, 30 unaffected first-degree relatives (FDR) and 32 healthy controls (HC) underwent diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). We examined the structural rich club organization and its interrelationship with functional coupling. Our results showed that rich club and peripheral connection strength in patients with OCD was lower than in HC, while it was intermediate in FDR. Finally, the coupling between structural and functional connections of the rich club, was decreased in FDR but not in OCD relative to HC, which suggests a buffering mechanism of brain functions in FDR. Overall, our findings suggest that alteration of the rich club organization may reflect a vulnerability biomarker for OCD, possibly buffered by structural and functional coupling of the rich club.


Subject(s)
Diffusion Tensor Imaging , Obsessive-Compulsive Disorder , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/genetics , Phenotype
19.
J Cogn Neurosci ; 33(11): 2394-2412, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34347864

ABSTRACT

Cognitive control can be adaptive along several dimensions, including intensity (how intensely do control signals influence bottom-up processing) and selectivity (what information is selected for further processing). Furthermore, control can be exerted along slow or fast time scales. Whereas control on a slow time scale is used to proactively prepare for upcoming challenges, control can also be used on a faster time scale to react to unexpected events that require control. Importantly, a systematic comparison of these dimensions and time scales remains lacking. Moreover, most current models of adaptive control allow predictions only at a behavioral, not neurophysiological, level, thus seriously reducing the range of available empirical restrictions for informing model formulation. The current article addresses this issue by implementing a control loop in an earlier model of neural synchrony. The resulting model is tested on a Stroop task. We observe that only the model that exerts cognitive control on intensity and selectivity dimensions, as well as on two time scales, can account for relevant behavioral and neurophysiological data. Our findings hold important implications for both cognitive control and how computational models can be empirically constrained.


Subject(s)
Cognition , Stroop Test , Adaptation, Physiological , Humans
20.
Psychon Bull Rev ; 28(6): 2045-2056, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34131890

ABSTRACT

Recent years have witnessed a steady increase in the number of studies investigating the role of reward prediction errors (RPEs) in declarative learning. Specifically, in several experimental paradigms, RPEs drive declarative learning, with larger and more positive RPEs enhancing declarative learning. However, it is unknown whether this RPE must derive from the participant's own response, or whether instead, any RPE is sufficient to obtain the learning effect. To test this, we generated RPEs in the same experimental paradigm where we combined an agency and a nonagency condition. We observed no interaction between RPE and agency, suggesting that any RPE (irrespective of its source) can drive declarative learning. This result holds implications for declarative learning theory.


Subject(s)
Learning , Reward , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...