Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 71(5): 459-465, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32500546

ABSTRACT

The objective was to screen 10 snake venoms for their efficacy to control growth and mycotoxin production by important mycotoxigenic fungi including Aspergillus flavus, Aspergillus westerdijkiae, Penicillium verrucosum, Fusarium graminearum and F. langsethiae. The Bioscreen C rapid assay system was used. The venoms from the Viperidae snake family delayed growth of some of the test fungi, especially F. graminearum and F. langsethiae and sometimes A. flavus. Some were also able to reduce mycotoxin production. The two most potent crude snake venoms (Naja nigricollis and N. siamensis; 41 and 43 fractions, respectively) were further fractionated and 83/84 of these fractions were able to reduce mycotoxin production by >90% in two of the mycotoxigenic fungi examined. This study suggests that there may be significant potential for the identification of novel fungistatic/fungicidal bioactive compounds as preservatives of raw and processed food commodities post-harvest from such snake venoms.


Subject(s)
Aspergillus flavus/metabolism , Aspergillus/metabolism , Fusarium/metabolism , Mycotoxins/biosynthesis , Penicillium/metabolism , Viper Venoms/pharmacology , Animals , Antifungal Agents/pharmacology , Proof of Concept Study , Viperidae/metabolism
2.
Fungal Biol ; 124(1): 1-7, 2020 01.
Article in English | MEDLINE | ID: mdl-31892372

ABSTRACT

Aspergillus flavus is the main xerophylic species colonising stored peanuts resulting in contamination with aflatoxins (AFs) and cyclopiazonic acid (CPA). This study evaluated the relationship between storage of shelled peanuts under interacting abiotic conditions on (a) temporal respiration (R) and cumulative CO2 production, (b) dry matter losses (DMLs) and (c) aflatoxin B1 (AFB1) and CPA accumulation. Both naturally contaminated peanuts and those inoculated with A. flavus were stored for 7-days under different water activities (aw; 0.77-0.95) and temperatures (20-35°C). There was an increase in the temporal CO2 production rates in wetter and warmer conditions, with the highest respiration at 0.95 aw + A. flavus inoculum at 30°C (2474 mg CO2kg-1h-1). The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Maximum mycotoxin contamination was always at 0.95 aw although optimal temperatures were 25-30°C for AFs and 30-35°C for CPA. These results showed a correlation between CO2 production and mycotoxin accumulation. They also provide valuable information for the creation of a database focused on the development of a post-harvest decision support system to determine the relative risks of contamination with these mycotoxins in stored shelled peanuts.


Subject(s)
Arachis/microbiology , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Carbon Dioxide/metabolism , Food Storage , Mycotoxins/analysis , Aflatoxin B1/analysis , Aflatoxin B1/biosynthesis , Food Microbiology , Indoles/analysis , Indoles/metabolism , Mycotoxins/biosynthesis , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...