Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14374, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909125

ABSTRACT

Metal-implant associated bacterial infections are a major clinical problem due to antibiotic treatment failure. As an alternative, we determined the effects of bacteriophage ISP on clinical isolates of Staphylococcus aureus in various stages of its life cycle in relation to biofilm formation and maturation. ISP effectively eliminated all planktonic phase bacteria, whereas its efficacy was reduced against bacteria attached to the metal implant and bacteria embedded within biofilms. The biofilm architecture hampered the bactericidal effects of ISP, as mechanical disruption of biofilms improved the efficacy of ISP against the bacteria. Phages penetrated the biofilm and interacted with the bacteria throughout the biofilm. However, most of the biofilm-embedded bacteria were phage-tolerant. In agreement, bacteria dispersed from mature biofilms of all clinical isolates, except for LUH15394, tolerated the lytic activity of ISP. Lastly, persisters within mature biofilms tolerated ISP and proliferated in its presence. Based on these findings, we conclude that ISP eliminates planktonic phase Staphylococcus aureus while its efficacy is limited against bacteria attached to the metal implant, embedded within (persister-enriched) biofilms, and dispersed from biofilms.


Subject(s)
Biofilms , Plankton , Staphylococcus Phages , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Staphylococcus aureus/virology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus Phages/physiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Humans , Bacteriophages/physiology
2.
Front Microbiol ; 14: 1145210, 2023.
Article in English | MEDLINE | ID: mdl-37152752

ABSTRACT

Introduction: One of the main causes of treatment failure in bacterial prosthetic joint infections (PJI) is biofilm formation. The topography of the biofilm may be associated with susceptibility to antimicrobial treatment. The aims of this study were to assess differences in topography of biofilms on different implant materials and the correlation thereof with susceptibility to antimicrobial treatment. Methods: Methicillin-resistant Staphylococcus aureus (MRSA) 7-day mature biofilms were generated on disks made from titanium alloys (Ti-6Al-7Nb and Ti-6Al-4V), synthetic polymer and orthopedic bone cement, commonly used in implant surgery. The surface topography of these implant materials and the biofilms cultured on them was assessed using atomic force microscopy. This provided detailed images, as well as average roughness (Ra) and peak-to-valley roughness (Rt) values in nanometers, of the biofilm and the material surfaces. Bacterial counts within biofilms were assessed microbiologically. Antimicrobial treatment of biofilms was performed by 24-h exposure to the combination of rifampicin and ciprofloxacin in concentrations of 1-, 5- and 10-times the minimal bactericidal concentration (MBC). Finally, treatment-induced differences in bacterial loads and their correlation with biofilm surface parameters were assessed. Results: The biofilm surfaces on titanium alloys Ti-6Al-7Nb (Ra = 186 nm) and Ti-6Al-4V (Ra = 270 nm) were less rough than those of biofilms on silicone (Ra = 636 nm). The highest roughness was observed for biofilms on orthopedic bone cement with an Ra of 1,551 nm. Interestingly, the roughness parameters of the titanium alloys themselves were lower than the value for silicone, whereas the surface of the bone cement was the roughest. Treatment with 1- and 5-times the MBC of antibiotics resulted in inter-material differences in colony forming units (CFU) counts, ultimately showing comparable reductions of 2.4-3.0 log CFU/mL at the highest tested concentration. No significant differences in bacterial loads within MRSA biofilms were observed between the various implant materials, upon exposure to increasing concentrations of antibiotics. Discussion: The surface parameters of MRSA biofilms were determined by those of the implant materials on which they were formed. The antibiotic susceptibility of MRSA biofilms on the various tested implant materials did not differ, indicating that the efficacy of antibiotics was not affected by the roughness of the biofilm.

SELECTION OF CITATIONS
SEARCH DETAIL
...