Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(12): 124502, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296116

ABSTRACT

Anisotropic particles play a major role in many environmental and industrial turbulent flows. The modeling of their rotation dynamics is a fundamental challenge which has some important consequences in industrial processes, such as in the paper making industry. This study investigates the rotation rate of neutrally buoyant fibers longer than the Kolmogorov length η_{K}. We show that the fiber inertia is at the origin of a decrease of the rotation rate. We propose a model which describes this phenomenon. We introduce also a new Stokes number which defines the limit of validity of the classical slender body approximation.

2.
Article in English | MEDLINE | ID: mdl-25353878

ABSTRACT

We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.

3.
Phys Rev Lett ; 112(7): 074501, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579604

ABSTRACT

We describe, for the first time, an experiment devoted to the study of the spatial conformation of a flexible fiber in a turbulent flow. We propose a model for the transition from rigid to flexible regimes as the intensity of turbulence is increased or the elastic energy of the fiber is decreased. This transition occurs for a fiber typical length which is observed experimentally and recovered by our analysis. We also demonstrate that the conformations of flexible fibers in a turbulent flow are analog to conformations of flexible polymers in a good solvent. This last result opens some new and creative ways to model flexible fiber distortions in turbulent flows while addressing fundamental problems in polymer dynamics.

4.
Phys Rev Lett ; 108(14): 144501, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540795

ABSTRACT

We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...