Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mol Neurodegener ; 19(1): 38, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658964

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS: We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS: We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS: Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.


Subject(s)
Adaptive Immunity , Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Humans , Alzheimer Disease/immunology , Alzheimer Disease/cerebrospinal fluid , Aged , Male , Cognitive Dysfunction/immunology , Female , Adaptive Immunity/immunology , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Middle Aged
2.
Cancer Sci ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686549

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival of less than 10%. More knowledge of the immune response developed in patients with PDAC is pivotal to develop better combination immune therapies to improve clinical outcome. In this study, we used mass cytometry time-of-flight to undertake an in-depth characterization of PBMCs from patients with PDAC and examine the differences with healthy controls and patients with benign diseases of the biliary system or pancreas. Peripheral blood mononuclear cells from patients with PDAC or benign disease are characterized by the increase of pro-inflammatory cells, as CD86+ classical monocytes and memory T cells expressing CCR6+ and CXCR3+, associated with T helper 1 (Th1) and Th17 immune responses, respectively. However, PBMCs from patients with PDAC present also an increase of CD39+ regulatory T cells and CCR4+CCR6-CXCR3- memory T cells, suggesting Th2 and regulatory responses. Concluding, our results show PDAC develops a multifaceted immunity, where a proinflammatory component is accompanied by regulatory responses, which could inhibit potential antitumor mechanisms.

3.
N Biotechnol ; 81: 33-42, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38493996

ABSTRACT

We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.


Subject(s)
Coordination Complexes , Maleimides , Polymers , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Peptides/chemistry , Metals/chemistry , Chelating Agents/chemistry , Antibodies
4.
J Infect ; 88(4): 106131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431153

ABSTRACT

OBJECTIVES: Lymphopenia at hospital admission occurs in over one-third of patients with community-acquired pneumonia (CAP), yet its clinical relevance and pathophysiological implications remain underexplored. We evaluated outcomes and immune features of patients with lymphopenic CAP (L-CAP), a previously described immunophenotype characterized by admission lymphocyte count <0.724 × 109 cells/L. METHODS: Observational study in 149 patients admitted to a general ward for CAP. We measured 34 plasma biomarkers reflective of inflammation, endothelial cell responses, coagulation, and immune checkpoints. We characterized lymphocyte phenotypes in 29 patients using spectral flow cytometry. RESULTS: L-CAP occurred in 45 patients (30.2%) and was associated with prolonged time-to-clinical-stability (median 5 versus 3 days), also when we accounted for competing events for reaching clinical stability and adjusted for baseline covariates (subdistribution hazard ratio 0.63; 95% confidence interval 0.45-0.88). L-CAP patients demonstrated a proportional depletion of CD4 T follicular helper cells, CD4 T effector memory cells, naïve CD8 T cells and IgG+ B cells. Plasma biomarker analyses indicated increased activation of the cytokine network and the vascular endothelium in L-CAP. CONCLUSIONS: L-CAP patients have a protracted clinical recovery course and a more broadly dysregulated host response. These findings highlight the prognostic and pathophysiological relevance of admission lymphopenia in patients with CAP.


Subject(s)
Community-Acquired Infections , Lymphopenia , Pneumonia , Humans , Inflammation , Hospitalization
5.
Front Immunol ; 15: 1343484, 2024.
Article in English | MEDLINE | ID: mdl-38318180

ABSTRACT

Background: Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods: High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results: Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion: High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Leukocytes, Mononuclear/pathology , CD4-Positive T-Lymphocytes , Immunotherapy/methods , Dexamethasone/therapeutic use
6.
Front Immunol ; 14: 1260283, 2023.
Article in English | MEDLINE | ID: mdl-38077404

ABSTRACT

Background: Community-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP. Methods: We analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35). Results: We identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP. Conclusion: CAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Adult , Humans , Leukocytes, Mononuclear , Receptors, CCR7 , Immunity
7.
Cytometry B Clin Cytom ; 104(2): 128-140, 2023 03.
Article in English | MEDLINE | ID: mdl-35289472

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) at risk of transformation to acute myeloid leukemia (AML) are difficult to identify. The bone marrows of MDS patients harbor specific hematopoietic stem and progenitor cell (HSPC) abnormalities that may be associated with sub-types and risk-groups. Leukemia-associated characteristics of such cells may identify MDS patients at risk of progression to AML and provide insight in the pathobiology of MDS. METHODS: Bone marrow samples from healthy donors (n = 10), low risk (n = 12) and high risk (n = 13) MDS patients were collected, in addition, AML samples for 5 out of 6 MDS patients that progressed. Mass cytometry was applied to assess expression of stem cell subset and leukemia-associated immunophenotype markers. RESULTS: We analyzed the data using FlowSOM to cluster cells with similar expression of 10 commonly used stem cell markers. Metaclusters (n = 20) of these clusters represented populations of cells with a related phenotype, largely resembling known stem cell subsets. Within specific subsets, intra-cellular expression levels of pCREB, IkBα, or pS6 differed significantly between healthy bone marrow (HBM) and MDS or consecutive secondary AML samples. CD34, CD44, and CD49f expression was significantly increased in high risk MDS and AML-associated metaclusters. We identified MDS/sAML cells with aberrant phenotypes when compared to HBM. Such cells were observed in clusters of both primary MDS and secondary AML samples. CONCLUSIONS: High-dimensional mass cytometry and computational data analyses enabled characterization of HSPC subsets in MDS and identification of leukemia stem cell populations based on their immunophenotype. Stem cells in MDS that display leukemia-associated features may predict the risk of developing AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Flow Cytometry , Myelodysplastic Syndromes/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Risk Factors
8.
BMC Bioinformatics ; 23(1): 487, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384426

ABSTRACT

BACKGROUND: Current methods of high-dimensional unsupervised clustering of mass cytometry data lack means to monitor and evaluate clustering results. Whether unsupervised clustering is correct is typically evaluated by agreement with dimensionality reduction techniques or based on benchmarking with manually classified cells. The ambiguity and lack of reproducibility of sequential gating has been replaced with ambiguity in interpretation of clustering results. On the other hand, spurious overclustering of data leads to loss of statistical power. We have developed INFLECT, an R-package designed to give insight in clustering results and provide an optimal number of clusters. In our approach, a mass cytometry dataset is overclustered intentionally to ensure the smallest phenotypically different subsets are captured using FlowSOM. A range of metacluster number endpoints are generated and evaluated using marker interquartile range and distribution unimodality checks. The fraction of marker distributions that pass these checks is taken as a measure of clustering success. The fraction of unimodal distributions within metaclusters is plotted against the number of generated metaclusters and reaches a plateau of diminishing returns. The inflection point at which this occurs gives an optimal point of capturing cellular heterogeneity versus statistical power. RESULTS: We applied INFLECT to four publically available mass cytometry datasets of different size and number of markers. The unimodality score consistently reached a plateau, with an inflection point dependent on dataset size and number of dimensions. We tested both ConsenusClusterPlus metaclustering and hierarchical clustering. While hierarchical clustering is less computationally expensive and thus faster, it achieved similar results to ConsensusClusterPlus. The four datasets consisted of labeled data and we compared INFLECT metaclustering to published results. INFLECT identified a higher optimal number of metaclusters for all datasets. We illustrated the underlying heterogeneity within labels, showing that these labels encompass distinct types of cells. CONCLUSION: INFLECT addresses a knowledge gap in high-dimensional cytometry analysis, namely assessing clustering results. This is done through monitoring marker distributions for interquartile range and unimodality across a range of metacluster numbers. The inflection point is the optimal trade-off between cellular heterogeneity and statistical power, applied in this work for FlowSOM clustering on mass cytometry datasets.


Subject(s)
Reproducibility of Results , Cluster Analysis , Biomarkers
9.
Cells ; 11(18)2022 09 12.
Article in English | MEDLINE | ID: mdl-36139421

ABSTRACT

BACKGROUND: Myeloid cells are critical determinants of the sustained inflammation in Crohn's Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities. In the current study, we make use of a BET inhibitor containing an esterase sensitive motif (ESM-iBET), which is cleaved by carboxylesterase-1 (CES1), a highly expressed esterase in mononuclear myeloid cells. METHODS: We profiled CES1 protein expression in the intestinal biopsies, peripheral blood, and CD fistula tract (fCD) cells of CD patients using mass cytometry. The anti-inflammatory effect of ESM-iBET or its control (iBET) were evaluated in healthy donor CD14+ monocytes and fCD cells, using cytometric beads assay or RNA-sequencing. RESULTS: CES1 was specifically expressed in monocyte, macrophage, and dendritic cell populations in the intestinal tissue, peripheral blood, and fCD cells of CD patients. ESM-iBET inhibited IL1ß, IL6, and TNFα secretion from healthy donor CD14+ monocytes and fCD immune cells, with 10- to 26-fold more potency over iBET in isolated CD14+ monocytes. Transcriptomic analysis revealed that ESM-iBET inhibited multiple inflammatory pathways, including TNF, JAK-STAT, NF-kB, NOD2, and AKT signaling, with superior potency over iBET. CONCLUSIONS: We demonstrate specific CES1 expression in mononuclear myeloid cell subsets in peripheral blood and inflamed tissues of CD patients. We report that low dose ESM-iBET accumulates in CES1-expressing cells and exerts robust anti-inflammatory effects, which could be beneficial in refractory CD patients.


Subject(s)
Anti-Inflammatory Agents , Crohn Disease , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carboxylic Ester Hydrolases , Crohn Disease/drug therapy , Crohn Disease/metabolism , Humans , Inflammation Mediators , Interleukin-6 , Myeloid Cells/metabolism , NF-kappa B , Proto-Oncogene Proteins c-akt , RNA , Tumor Necrosis Factor-alpha
10.
Front Immunol ; 13: 840935, 2022.
Article in English | MEDLINE | ID: mdl-35371111

ABSTRACT

Background: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease affecting the intra- and extrahepatic bile ducts, and is strongly associated with ulcerative colitis (UC). In this study, we explored the peripheral blood DNA methylome and its immune cell composition in patients with PSC-UC, UC, and healthy controls (HC) with the aim to develop a predictive assay in distinguishing patients with PSC-UC from those with UC alone. Methods: The peripheral blood DNA methylome of male patients with PSC and concomitant UC, UC and HCs was profiled using the Illumina HumanMethylation Infinium EPIC BeadChip (850K) array. Differentially methylated CpG position (DMP) and region (DMR) analyses were performed alongside gradient boosting classification analyses to discern PSC-UC from UC patients. As observed differences in the DNA methylome could be the result of differences in cellular populations, we additionally employed mass cytometry (CyTOF) to characterize the immune cell compositions. Results: Genome wide methylation analysis did not reveal large differences between PSC-UC and UC patients nor HCs. Nonetheless, using gradient boosting we were capable of discerning PSC-UC from UC with an area under the receiver operator curve (AUROC) of 0.80. Four CpG sites annotated to the NINJ2 gene were found to strongly contribute to the predictive performance. While CyTOF analyses corroborated the largely similar blood cell composition among patients with PSC-UC, UC and HC, a higher abundance of myeloid cells was observed in UC compared to PSC-UC patients. Conclusion: DNA methylation enables discerning PSC-UC from UC patients, with a potential for biomarker development.


Subject(s)
Cholangitis, Sclerosing , Colitis, Ulcerative , Area Under Curve , Biomarkers , Cell Adhesion Molecules, Neuronal , Cholangitis, Sclerosing/genetics , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Epigenesis, Genetic , Humans , Male
11.
J Crohns Colitis ; 16(4): 668-681, 2022 May 10.
Article in English | MEDLINE | ID: mdl-34633041

ABSTRACT

BACKGROUND AND AIMS: Histone deacetylase inhibitors [HDACi] exert potent anti-inflammatory effects. Because of the ubiquitous expression of HDACs, clinical utility of HDACi is limited by off-target effects. Esterase-sensitive motif [ESM] technology aims to deliver ESM-conjugated compounds to human mononuclear myeloid cells, based on their expression of carboxylesterase 1 [CES1]. This study aims to investigate utility of an ESM-tagged HDACi in inflammatory bowel disease [IBD]. METHODS: CES1 expression was assessed in human blood, in vitro differentiated macrophage and dendritic cells, and Crohn's disease [CD] colon mucosa, by mass cytometry, quantitative polymerase chain reaction [PCR], and immunofluorescence staining, respectively. ESM-HDAC528 intracellular retention was evaluated by mass spectrometry. Clinical efficacy of ESM-HDAC528 was tested in dextran sulphate sodium [DSS]-induced colitis and T cell transfer colitis models using transgenic mice expressing human CES1 under the CD68 promoter. RESULTS: CES1 mRNA was highly expressed in human blood CD14+ monocytes, in vitro differentiated and lipopolysaccharide [LPS]-stimulated macrophages, and dendritic cells. Specific hydrolysis and intracellular retention of ESM-HDAC528 in CES1+ cells was demonstrated. ESM-HDAC528 inhibited LPS-stimulated IL-6 and TNF-α production 1000 times more potently than its control, HDAC800, in CES1high monocytes. In healthy donor peripheral blood, CES1 expression was significantly higher in CD14++CD16- monocytes compared with CD14+CD16++ monocytes. In CD-inflamed colon, a higher number of mucosal CD68+ macrophages expressed CES1 compared with non-inflamed mucosa. In vivo, ESM-HDAC528 reduced monocyte differentiation in the colon and significantly improved colitis in a T cell transfer model, while having limited potential in ameliorating DSS-induced colitis. CONCLUSIONS: We demonstrate that monocytes and inflammatory macrophages specifically express CES1, and can be preferentially targeted by ESM-HDAC528 to achieve therapeutic benefit in IBD.


Subject(s)
Carboxylic Ester Hydrolases , Colitis , Crohn Disease , Histone Deacetylase Inhibitors , Inflammatory Bowel Diseases , Animals , Carboxylic Ester Hydrolases/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Crohn Disease/drug therapy , Crohn Disease/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides , Mice , Monocytes , Myeloid Cells
12.
Front Immunol ; 12: 706517, 2021.
Article in English | MEDLINE | ID: mdl-34367166

ABSTRACT

Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.


Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Interleukin-2/immunology , Melanoma, Experimental/pathology , Oncolytic Virotherapy/methods , Tumor Necrosis Factor-alpha/immunology , Adenoviridae , Animals , Drug Resistance, Neoplasm , Female , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors
13.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: mdl-33846275

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
14.
Cells ; 9(8)2020 07 25.
Article in English | MEDLINE | ID: mdl-32722384

ABSTRACT

Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment with curative intent for peritoneal metastasis of colorectal cancer (CRC). Currently, there is no standardized HIPEC protocol: choice of drug, perfusate temperature, and duration of treatment vary per institute. We investigated the temperature-dependent effectiveness of drugs often used in HIPEC. METHODS: The effect of temperature on drug uptake, DNA damage, apoptosis, cell cycle distribution, and cell growth were assessed using the temperature-dependent IC50 and Thermal Enhancement Ratio (TER) values of the chemotherapeutic drugs cisplatin, oxaliplatin, carboplatin, mitomycin-C (MMC), and 5-fluorouracil (5-FU) on 2D and 3D CRC cell cultures at clinically relevant hyperthermic conditions (38-43 °C/60 min). RESULTS: Hyperthermia alone decreased cell viability and clonogenicity of all cell lines. Treatment with platinum-based drugs and MMC resulted in G2-arrest. Platinum-based drugs display a temperature-dependent synergy with heat, with increased drug uptake, DNA damage, and apoptosis at elevated temperatures. Apoptotic levels increased after treatment with MMC or 5-FU, without a synergy with heat. CONCLUSION: Our in vitro results demonstrate that a 60-min exposure of platinum-based drugs and MMC are effective in treating 2D and 3D CRC cell cultures, where platinum-based drugs require hyperthermia (>41 °C) to augment effectivity, suggesting that they are, in principle, suitable for HIPEC.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/surgery , Cytoreduction Surgical Procedures/methods , Fluorouracil/therapeutic use , Hyperthermia, Induced/methods , Hyperthermic Intraperitoneal Chemotherapy/methods , Mitomycin/therapeutic use , Antibiotics, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/pathology , Fluorouracil/pharmacology , Humans , Mitomycin/pharmacology
15.
Proc Natl Acad Sci U S A ; 117(7): 3693-3703, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32019882

ABSTRACT

Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.


Subject(s)
Asialoglycoproteins/immunology , Glioblastoma/immunology , Lectins, C-Type/immunology , Membrane Proteins/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Asialoglycoproteins/chemistry , Asialoglycoproteins/genetics , Glioblastoma/genetics , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Macrophages/immunology , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Microglia/immunology , Polysaccharides/chemistry , Polysaccharides/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...