Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007196

ABSTRACT

The unoccupied π* orbitals of the nucleobases are considered to play important roles in low-energy electron attachment to DNA, inducing damage. While the lowest anionic valence state is vertically unbound in all neutral nucleobases, it remains unclear even for the simplest nucleobase, uracil (U), whether its valence anion (U-) is adiabatically bound, which has important implications on the efficacy of damage processes. Using anion photoelectron spectroscopy, we demonstrate that the valence electron affinity (EAV) of U can be accurately measured within weakly solvating clusters, U-(Ar)n and U-(N2)n. Through extrapolation to the isolated U limit, we show that EAV = -2 ± 18 meV. We discuss these findings in the context of electron attachment to U and its reorganization energy, and more generally establish guidance for the determination of molecular electron affinities from the photoelectron spectroscopy of anion clusters.

2.
J Phys Chem A ; 128(27): 5321-5330, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38935624

ABSTRACT

The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.

3.
Phys Chem Chem Phys ; 26(15): 12053-12059, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578256

ABSTRACT

Photoelectron spectroscopy and electronic structure calculations are used to investigate the electronic structure of the deprotonated anionic form of the aromatic amino acid tryptophan, and its chromophore, indole. The photoelectron spectra of tryptophan, recorded at different wavelengths across the UV, consist of two direct detachment channels and thermionic emission, whereas the hν = 4.66 eV spectrum of indole consists of two direct detachment features. Electronic structure calculations indicate that two deprotomers of tryptophan are present in the ion beam; deprotonation of the carboxylic acid group (Trp(I)-) or the N atom on the indole ring (Trp(II)-). Strong similarities are observed between the direct detachment channels in the photoelectron spectra of tryptophan and indole, which in conjunction with electronic structure calculations, indicate that electron loss from Trp(II)- dominates this portion of the spectra. However, there is some evidence that direct detachment of Trp(I)- is also observed. Thermionic emission is determined to predominantly arise from the decarboxylation of Trp(I)-, mediated by the ππ* excited state near λ = 300 nm, which results in an anionic fragment with a negative electron affinity that readily autodetaches.

4.
Annu Rev Phys Chem ; 75(1): 89-110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277700

ABSTRACT

Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.

6.
Nat Commun ; 15(1): 182, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167300

ABSTRACT

The hydrated electron, e-(aq), has attracted much attention as a central species in radiation chemistry. However, much less is known about e-(aq) at the water/air surface, despite its fundamental role in electron transfer processes at interfaces. Using time-resolved electronic sum-frequency generation spectroscopy, the electronic spectrum of e-(aq) at the water/air interface and its dynamics are measured here, following photo-oxidation of the phenoxide anion. The spectral maximum agrees with that for bulk e-(aq) and shows that the orbital density resides predominantly within the aqueous phase, in agreement with supporting calculations. In contrast, the chemistry of the interfacial hydrated electron differs from that in bulk water, with e-(aq) diffusing into the bulk and leaving the phenoxyl radical at the surface. Our work resolves long-standing questions about e-(aq) at the water/air interface and highlights its potential role in chemistry at the ubiquitous aqueous interface.

7.
Phys Chem Chem Phys ; 25(48): 32939-32947, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38018508

ABSTRACT

Photoelectron imaging, electron action spectroscopy and electronic structure calculations are used to probe the structure and dynamics of MnO4-. Following excitation to the first bright absorption band of MnO4- (11T2), photodetachment, via ground state electron loss, and photodissociation, to produce MnO2-, are both observed to occur simultaneously. MnO2- is produced in an excited electronic state, identified as a triplet state, which indicates that the dissociation proceeds on singlet potential energy surfaces via spin conservation. Furthermore, electronic structure calculations indicate that both photodetachment and photodissociation are multiple photon processes that are mediated by the same 11T2 excited state. Taken together this data indicates that photodissociation of MnO4- occurs via a statistical dissociation on the MnO4- ground state at visible wavelengths.

9.
Phys Chem Chem Phys ; 25(35): 23626-23636, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37649445

ABSTRACT

Fluorescent labelling of macromolecular samples, including using the green fluorescent protein (GFP), has revolutionised the field of bioimaging. The ongoing development of fluorescent proteins require a detailed understanding of the photophysics of the biochromophore, and how chemical derivatisation influences the excited state dynamics. Here, we investigate the photophysical properties associated with the S1 state of three alkylated derivatives of the chromophore in GFP, in the gas phase using time-resolved photoelectron imaging, and in water using femtosecond fluorescence upconversion. The gas-phase lifetimes (1.6-10 ps), which are associated with the intrinsic (environment independent) dynamics, are substantially longer than the lifetimes in water (0.06-3 ps), attributed to stabilisation of both twisted intermediate structures and conical intersection seams in the condensed phase. In the gas phase, alkylation on the 3 and 5 positions of the phenyl ring slows the dynamics due to inertial effects, while a 'pre-twist' of the methine bridge through alkylation on the 2 and 6 positions significantly shortens the excited state lifetimes. Formation of a minor, long-lived (≫ 40 ps) excited state population in the gas phase is attributed to intersystem crossing to a triplet state, accessed because of a T1/S1 degeneracy in the so-called P-trap potential energy minimum associated with torsion of the single-bond in the bridging unit connecting to the phenoxide ring. A small amount of intersystem crossing is supported through TD-DFT molecular dynamics trajectories and MS-CASPT2 calculations. No such intersystem crossing occurs in water at T = 300 K or in ethanol at T ≈ 77 K, due to a significantly altered potential energy surface and P-trap geometry.


Subject(s)
Coloring Agents , Ethanol , Green Fluorescent Proteins , Fluorescence , Density Functional Theory
10.
J Chem Phys ; 158(15)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37094021

ABSTRACT

The decarboxylation dynamics of the doubly deprotonated fluorescein dianion, Fl2-, are investigated by recording fragment action spectra for the anion, Fl-, and its decarboxylated analog, Fl-CO2-, using a new reflectron secondary mass spectrometer. The formation of the anion, Fl-, is directly investigated by photoelectron imaging. The Fl- and Fl-CO2- action spectra indicate that, for λ < 400 nm, one-photon dissociative photodetachment, i.e., simultaneous decarboxylation and electron loss, competes with photodetachment, whereas for λ > 400 nm, decarboxylation only proceeds following electron loss via a sequential two-photon process. The primary decarboxylation pathway is the ready loss of CO2 from the relatively short-lived intermediate excited state, Fl-[D1], which is formed by electron loss from the dianion via resonant tunneling through the repulsive Coloumb barrier associated with a high-lying excited dianion state, Fl2-[S2].

11.
J Am Chem Soc ; 145(2): 1319-1326, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36584340

ABSTRACT

When high-energy radiation passes through aqueous material, low-energy electrons are produced which cause DNA damage. Electronic states of anionic nucleobases have been suggested as an entrance channel to capture the electron. However, identifying these electronic resonances have been restricted to gas-phase electron-nucleobase studies and offer limited insight into the resonances available within the aqueous environment of DNA. Here, resonance and detachment energies of the micro-hydrated uracil pyrimidine nucleobase anion are determined by two-dimensional photoelectron spectroscopy and are shown to extrapolate linearly with cluster size. This extrapolation allows the corresponding resonance and detachment energies to be determined for uracil in aqueous solution as well as the reorganization energy associated with electron capture. Two shape resonances are clearly identified that can capture low-energy electrons and subsequently form the radical anion by solvent stabilization and internal conversion to the ground electronic state. The resonances and their dynamics probed here are the nucleobase-centered doorway states for low-energy electron capture and damage in DNA.


Subject(s)
Uracil , Water , Water/chemistry , Uracil/chemistry , Anions/chemistry , Solvents/chemistry , DNA
12.
Nat Commun ; 13(1): 5289, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36075935

ABSTRACT

Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. Here, we show that CO2 binding to the light-harvesting complex modulates EET in photosynthetic cyanobacteria. More specifically, CO2 binding to the allophycocyanin alpha subunit of the light-harvesting complex regulates EET and its fluorescence quantum yield in the cyanobacterium Synechocystis sp. PCC 6803. CO2 binding decreases the inter-chromophore distance in the allophycocyanin trimer. The result is enhanced EET in vitro and in live cells. Our work identifies a direct target for CO2 in the cyanobacterial light-harvesting apparatus and provides insights into photosynthesis regulation.


Subject(s)
Phycobilisomes , Synechocystis , Carbon Dioxide/metabolism , Photosynthesis , Phycobilisomes/metabolism , Phycocyanin , Receptors, Cell Surface , Synechocystis/metabolism
13.
J Chem Phys ; 157(6): 064302, 2022 Aug 14.
Article in English | MEDLINE | ID: mdl-35963718

ABSTRACT

We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries. In both cases, the anions decay by electron emission and we record the electron spectra. Several types of emission are recognized, differing by the way in which the resulting molecule is vibrationally excited. In the excitation of specific vibrational modes, distinctly different modes are visible in electron collision and photodetachment experiments. The unspecific vibrational excitation, which leads to the emission of thermal electrons following the internal vibrational redistribution, shows similar features in both experiments. A model for the thermal emission based on a detailed balance principle agrees with the experimental findings very well. Finally, a similar behavior in the two experiments is also observed for a third type of electron emission, the vibrational autodetachment, which yields electrons with constant final energies over a broad range of excitation energies. The entrance channels for the vibrational autodetachment are examined in detail, and they point to a new mechanism involving a reverse valence to non-valence internal conversion.

14.
J Phys Chem Lett ; 13(33): 7797-7801, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35973214

ABSTRACT

The long-range electronic structure of polyanions is defined by the repulsive Coulomb barrier (RCB). Excited states can decay by resonant electron tunnelling through RCBs, but such decay has not been observed for electronically excited states other than the first excited state, suggesting a Kasha-type rule for resonant electron tunnelling. Using action spectroscopy, photoelectron imaging, and computational chemistry, we show that the fluorescein dianion, Fl2-, partially decays through electron tunnelling from the S2 excited state, thus demonstrating anti-Kasha behavior, and that resonant electron tunnelling adheres to Koopmans' correlations, thus disentangling different channels.

15.
J Am Chem Soc ; 144(31): 14012-14015, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35900260

ABSTRACT

Molecular photodynamics can be dramatically affected at the water/air interface. Probing such dynamics is challenging, with product formation often probed indirectly through its interaction with interfacial water molecules using time-resolved and phase-sensitive vibrational sum-frequency generation (SFG). Here, the photoproduct formation of the phenolate anion at the water/air interface is probed directly using time-resolved electronic SFG and compared to transient absorption spectra in bulk water. The mechanisms are broadly similar, but 2 to 4 times faster at the surface. An additional decay is observed at the surface which can be assigned to either diffusion of hydrated electrons from the surface into the bulk or due to increased geminate recombination at the surface. These overall results are in stark contrast to phenol, where dynamics were observed to be 104 times faster and for which the hydrated electron was also a photoproduct. Our attempt to probe phenol showed no electron signal at the interface.


Subject(s)
Vibration , Water , Anions , Phenols
16.
J Phys Chem A ; 126(22): 3495-3501, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35621996

ABSTRACT

Photoelectron spectroscopy has been used to study the electronic structure, photodetachment, and photodissociation of the stable diplatinum iodide dianions [Pt2I6]2- and [Pt2I8]2-. Photoelectron spectra over a range of photon energies show the characteristic absence of low kinetic energy photoelectrons expected for dianions as a result of the repulsive Coulomb barrier (RCB). Vertical detachment energies of ∼1.6 and ∼1.9 eV and minimum RCBs of ∼1.2 and ∼1.3 eV are reported for [Pt2I6]2- and [Pt2I8]2-, respectively. Both of the diplatinum halides exhibit three direct detachment channels with distinct anisotropies, analogous to the previously reported spectra for PtI2- and PtI-, suggesting a platinum-centered molecular core that dominates the photodetachment. Additionally, evidence for two-photon photodissociation and subsequent photodetachment channels producing I- are observed for both dianions. Finally, an unexplained feature is observed at photon energies around 3 eV, whose origin is considered. Our work highlights the complex electronic structure of the heavy platinum-halide dianions that are characterized by a dense manifold of electronic states.

17.
J Phys Chem Lett ; 13(16): 3529-3533, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35420036

ABSTRACT

The influence of incremental hydration (≤4) on the electronic resonances of the pyrene anion is studied using two-dimensional photoelectron spectroscopy. The photoexcitation energies of the resonances do not change; therefore, from the anion's perspective, the resonances remain the same, but from the neutral's perspective of the electron-molecule reaction, the resonances decrease in energy by the binding energy of the water molecules. The autodetachment of the resonances shows that hydration has very little effect, showing that even the dynamics of most of the resonances are not impacted by hydration. Two specific resonances do show changes that are explained by the closing of specific autodetachment channels. The lowest-energy resonance leads to efficient electron capture as observed through thermionic emission and evaporation of water molecules (dissociative electron attachment). The implications of low-energy electron capture in dense molecular interstellar clouds are discussed.


Subject(s)
Electrons , Water , Anions/chemistry , Photoelectron Spectroscopy , Pyrenes , Water/chemistry
18.
J Chem Phys ; 156(13): 134303, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35395905

ABSTRACT

The photoelectron imaging of PtI2 - is presented over photon energies ranging from hν = 3.2 to 4.5 eV. The electron affinity of PtI2 is found to be 3.4 ± 0.1 eV, and the photoelectron spectrum contains three distinct peaks corresponding to three low-lying neutral states. Using a simple d-block model and the measured photoelectron angular distributions, the three states are tentatively assigned. Photodissociation of PtI2 - is also observed, leading to the formation of I- and of PtI-. The latter allows us to determine the electron affinity of PtI to be 2.35 ± 0.10 eV. The spectrum of PtI- is similarly structured with three peaks which, again, can be tentatively assigned using a similar model that agrees with the photoelectron angular distributions.

19.
Nat Commun ; 13(1): 937, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177613

ABSTRACT

The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich. Using photoelectron imaging and computational chemistry, we show that photoexcitation by UVA light leads to the formation of CO2, CO, and CH3-. The observation of the unusual methide anion formation and its subsequent decomposition into methyl radical and a free electron may hold important consequences for atmospheric chemistry. From a mechanistic perspective, the initial decarboxylation of pyruvate necessarily differs from that in pyruvic acid, due to the missing proton in the anion.

20.
Acc Chem Res ; 55(9): 1205-1213, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35172580

ABSTRACT

Chemistry can be described as the movement of nuclei within molecules and the concomitant instantaneous change in electronic structure. This idea underpins the central chemical concepts of potential energy surfaces and reaction coordinates. To experimentally capture such chemical change therefore requires methods that can probe both the nuclear and electronic structure simultaneously and on the time scale of atomic motion. In this Account, we show how time-resolved photoelectron imaging can do exactly this and how it can be used to build a detailed and intuitive understanding of the electronic structure and excited-state dynamics of chromophores. The chromophore of the photoactive yellow protein (PYP) is used as a case study. This chromophore contains a para-substituted phenolate anion, where the substituent, R, can be viewed as an acrolein derivative. It is shown that the measured photoelectron angular distribution can be directly related to the electronic structure of the para-substituted phenolate anion. By incrementally considering differing R groups, it is also shown that these photoelectron angular distributions are exquisitely sensitive to the conformational flexibility of R and that when R contains a π-system the excited states of the chromophore can be viewed as a linear combination of the π* molecular orbitals on the phenolate (πPh*) and the R substituent (πR*). Such Hückel treatment shows that the S1 state of the PYP chromophore has predominantly πR* character and that it is essentially the same as the chromophore of the green fluorescent protein (GFP). The S1 excited-state dynamics of the PYP chromophore probed by time-resolved photoelectron imaging clearly reveals both structural (nuclear) dynamics through the energy spectrum and electronic dynamics through the photoelectron angular distributions. Both motions can be accurately assigned using quantum chemical calculations, and these are consistent with the intuitive Hückel treatment presented. The photoactive protein chromophores considered here are examples of where a chemists' intuitive Hückel view for ground-state chemistry appears to be transferable to the prediction of photochemical excited-state reactivity. While elegant and insightful, such models have limitations, including nonadiabatic dynamics, which is present in a related PYP chromophore, where a fraction of the S1 state population forms a nonvalence (dipole-bound) state of the anion.


Subject(s)
Bacterial Proteins , Anions/chemistry , Bacterial Proteins/chemistry , Green Fluorescent Proteins/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...