Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299493, 2024.
Article in English | MEDLINE | ID: mdl-38625928

ABSTRACT

Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.


Subject(s)
Coffea , Coffee , Humans , Haiti , Ecosystem , Coffea/genetics , Genetic Variation
2.
Ann Bot ; 133(7): 917-930, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38441303

ABSTRACT

BACKGROUND AND AIMS: Plant breeders are increasingly turning to crop wild relatives (CWRs) to ensure food security in a rapidly changing environment. However, CWR populations are confronted with various human-induced threats, including hybridization with their nearby cultivated crops. This might be a particular problem for wild coffee species, which often occur near coffee cultivation areas. Here, we briefly review the evidence for wild Coffea arabica (cultivated as Arabica coffee) and Coffea canephora (cultivated as Robusta coffee) and then focused on C. canephora in the Yangambi region in the Democratic Republic of the Congo. There, we examined the geographical distribution of cultivated C. canephora and the incidence of hybridization between cultivated and wild individuals within the rainforest. METHODS: We collected 71 C. canephora individuals from home gardens and 12 C. canephora individuals from the tropical rainforest in the Yangambi region and genotyped them using genotyping-by-sequencing (GBS). We compared the fingerprints with existing GBS data from 388 C. canephora individuals from natural tropical rainforests and the INERA Coffee Collection, a Robusta coffee field gene bank and the most probable source of cultivated genotypes in the area. We then established robust diagnostic fingerprints that genetically differentiate cultivated from wild coffee, identified cultivated-wild hybrids and mapped their geographical position in the rainforest. KEY RESULTS: We identified cultivated genotypes and cultivated-wild hybrids in zones with clear anthropogenic activity, and where cultivated C. canephora in home gardens may serve as a source for crop-to-wild gene flow. We found relatively few hybrids and backcrosses in the rainforests. CONCLUSIONS: The cultivation of C. canephora in close proximity to its wild gene pool has led to cultivated genotypes and cultivated-wild hybrids appearing within the natural habitats of C. canephora. Yet, given the high genetic similarity between the cultivated and wild gene pool, together with the relatively low incidence of hybridization, our results indicate that the overall impact in terms of risk of introgression remains limited so far.


Subject(s)
Coffea , Gene Flow , Coffea/genetics , Democratic Republic of the Congo , Crops, Agricultural/genetics , Hybridization, Genetic , Rainforest , Genotype
3.
Heredity (Edinb) ; 130(3): 145-153, 2023 03.
Article in English | MEDLINE | ID: mdl-36596880

ABSTRACT

Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.


Subject(s)
Coffea , Humans , Coffea/genetics , Coffee , Democratic Republic of the Congo , Forests , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...