Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Technol ; 39(17): 2251-2265, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28792277

ABSTRACT

Scrap material recovery and recycling companies are producing wastewater in which common pollutants (such as COD, nutrients and suspended solids), toxic metals, polyaromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) frequently can exceed the discharge limits. Lab-scale optimisation of different possible physical-chemical treatment techniques was performed on the wastewater originating from three different companies in view of further testing at pilot-scale testing and implementation at full-scale. The lab-scale tests demonstrate that sedimentation or hydrocyclone treatment as stand-alone technique cannot be used for proper treatment of this type of wastewater. Dual bed filtration or coagulation/flocculation proved to be more promising with removal efficiencies of about 71-95% (dual bed filtration) and 61-97% (coagulation/flocculation) for the above-mentioned pollutants (metals, PAH and PCB).


Subject(s)
Recycling , Waste Disposal, Fluid , Water Pollutants, Chemical , Filtration , Flocculation , Wastewater
2.
Water Sci Technol ; 76(3-4): 501-514, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28759434

ABSTRACT

Membrane application in water reclamation is challenged by fouling which deteriorates membrane performance in terms of permeate flux and solute rejection. Several studies focusing on antifouling membranes incorporated with nanoparticles have been carried out, but these membranes are not yet a viable solution due to their high energy requirements and inability to completely remove or degrade trace organic compounds (TOrCs). Therefore, this study aims at fabricating polyethersulfone (PES) membranes for treatment of pharmaceutical wastewater by using a unique membrane synthesis approach. PES membranes were synthesised by casting two different solutions before coagulation. Therefore, the synthesis technique was called 'double-casting phase inversion'. The membranes were impregnated with nanohybrid graphene oxide-zinc oxide (GO-ZnO) to increase their hydrophilicity, rejection of pharmaceuticals (by decreasing membrane-solute hydrophobic interactions), resistance to organic fouling and photodegradation properties. The addition of GO-ZnO increased membrane hydrophilicity and pure water permeability. The rejection of TOrCs and anti-fouling properties were also improved due to a reduction in membrane-solute and membrane-foulant hydrophobic interactions, respectively. In addition to improved TOrC rejection properties and resistance to fouling, GO-ZnO/PES membranes degraded Brilliant Black.


Subject(s)
Graphite , Membranes, Artificial , Nanoparticles/chemistry , Wastewater/chemistry , Water Purification/methods , Zinc Oxide , Drug Industry , Industrial Waste/analysis , Permeability , Pharmaceutical Preparations/chemistry , Polymers , Sulfones , Water/chemistry
3.
Water Sci Technol ; 73(9): 2150-8, 2016.
Article in English | MEDLINE | ID: mdl-27148716

ABSTRACT

Energy autarky of sewage treatment plants, while reaching chemical oxygen demand (COD) and N discharge limits, can be achieved by means of shortcut N-removal. This study presents the results of a shortcut N-removal pilot, located at the biological two-'stage (high/low rate) wastewater treatment plant of Breda, The Netherlands. The pilot treated real effluent of a high-rate activated sludge (COD/N = 3), fed in a continuous mode at realistic loading rates (90-100 g N/(m(3)·d)). The operational strategy, which included increased stress on the sludge settling velocity, showed development of a semi-granular sludge, with average particle size of 280 µm (ø(4,3)), resulting in increased suppression of nitrite-oxidizing bacteria. The process was able to remove part of the nitrogen (51 ± 23%) over nitrite, with COD/N removal ratios of 3.2 ± 0.9. The latter are lower than the current operation of the full-scale B-stage in Breda (6.8-9.4), showing promising results for carbon-efficient N-removal, while producing a well settling sludge (SVI(30) < 100 mL/g).


Subject(s)
Bioreactors , Nitrogen/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Bacteria/growth & development , Biological Oxygen Demand Analysis , Carbon , Denitrification , Netherlands , Nitrites , Sewage , Wastewater
4.
Chemosphere ; 144: 932-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26432535

ABSTRACT

This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge).


Subject(s)
Models, Theoretical , Organic Chemicals/analysis , Rivers/chemistry , Soil Microbiology , Soil/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Carbon/chemistry , Filtration , Fresh Water/chemistry , Groundwater/chemistry , Solubility , Wastewater/chemistry
5.
J Hazard Mater ; 304: 502-11, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26619049

ABSTRACT

This study investigated relationships between OMP biodegradation rates and the functional groups present in the chemical structure of a mixture of 31 OMPs. OMP biodegradation rates were determined from lab-scale columns filled with soil from RBF site Engelse Werk of the drinking water company Vitens in The Netherlands. A statistically significant relationship was found between OMP biodegradation rates and the functional groups of the molecular structures of OMPs in the mixture. The OMP biodegradation rate increased in the presence of carboxylic acids, hydroxyl groups, and carbonyl groups, but decreased in the presence of ethers, halogens, aliphatic ethers, methyl groups and ring structures in the chemical structure of the OMPs. The predictive model obtained from the lab-scale soil column experiment gave an accurate qualitative prediction of biodegradability for approximately 70% of the OMPs monitored in the field (80% excluding the glymes). The model was found to be less reliable for the more persistent OMPs (OMPs with predicted biodegradation rates lower or around the standard error=0.77d(-1)) and OMPs containing amide or amine groups. These OMPs should be carefully monitored in the field to determine their removal during RBF.


Subject(s)
Linear Models , Water Pollutants, Chemical , Biodegradation, Environmental , Filtration , Rivers/chemistry , Soil/chemistry , Soil Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
6.
Sci Total Environ ; 544: 309-18, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26657377

ABSTRACT

This study investigated the redox dependent removal and adaptive behaviour of a mixture of 15 organic micropollutants (OMPs) in laboratory-scale soil columns fed with river water. Three separate pilot systems were used consisting of: (1) two columns, (2) ten columns and (3) twenty two columns to create oxic, suboxic (partial nitrate removal) and anoxic (complete nitrate removal). The pilot set-up has some unique features--it can simulate fairly long residence times (e.g., 45 days using the 22 column system) and reduced conditions developed naturally within the system. Dimethoate, diuron, and metoprolol showed redox dependent removal behaviour with higher biodegradation rates in the oxic zone compared to the suboxic/anoxic zone. The redox dependent behaviour of these three OMPs could not be explained based on their physico-chemical properties (hydrophobicity, charge and molecular weight) or functional groups present in the molecular structure. OMPs that showed persistent behaviour in the oxic zone (atrazine, carbamazepine, hydrochlorothiazide and simazine) were also not removed under more reduced conditions. Adaptive behaviour was observed for five OMPs: dimethoate, chloridazon, lincomycin, sulfamethoxazole and phenazone. However, the adaptive behaviour could not be explained by the physico-chemical properties (hydrophobicity, charge and molecular weight) investigated in this study and only rough trends were observed with specific functional groups (e.g. ethers, sulphur, primary and secondary amines). Finally, the adaptive behaviour of OMPs was found to be an important factor that should be incorporated in predictive models for OMP removal during river bank filtration.


Subject(s)
Models, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Filtration , Oxidation-Reduction
7.
Sci Total Environ ; 536: 632-638, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26254065

ABSTRACT

This study investigated sorption and biodegradation behaviour of 20 organic micropollutants (OMPs) in lab-scale columns filled with two types of soil (fed with the same water quality) simulating river bank filtration (RBF) under oxic conditions. Retardation factors and OMP biodegradation rates were similar for the two soils that were characterised by a different cationic exchange capacity, organic matter and sand/silt/clay content. This result was supported by the microbial community composition (richness, evenness) of the two soils that became more similar as a result of feeding both columns with the same water quality. This indicates that microbial community composition and thereby OMP removal in soils is primarily determined by the composition of the aqueous phase (organic matter quantity and quality, nutrients) rather than the soil phase. These results indicate that different RBF sites located along the same river may show similar OMP removal (in case of similar water quality and residence time). CAPSULE: This study shows that the microbial community composition and thus OMP removal is primarily determined by the aqueous phase (water quality) rather than the soil phase.


Subject(s)
Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Genetic Variation
8.
Waste Manag ; 34(12): 2674-86, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25241019

ABSTRACT

Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole.


Subject(s)
Industrial Waste/analysis , Solid Waste/analysis , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Filtration , Recycling
9.
Water Res ; 58: 179-97, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24762551

ABSTRACT

Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector.


Subject(s)
Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods , Biofouling , Hydrogen-Ion Concentration , Membranes, Artificial , Osmosis , Permeability , Temperature , Water Pollutants/chemistry , Water Pollutants/metabolism
10.
Water Res ; 52: 231-41, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24275110

ABSTRACT

This study investigated sorption and biodegradation behaviour of 14 organic micropollutants (OMP) in soil columns representative of the first metre (oxic conditions) of the river bank filtration (RBF) process. Breakthrough curves were modelled to differentiate between OMP sorption and biodegradation. The main objective of this study was to investigate if the OMP biodegradation rate could be related to the physico-chemical properties (charge, hydrophobicity and molecular weight) or functional groups of the OMPs. Although trends were observed between charge or hydrophobicity and the biodegradation rate for charged compounds, a statistically significant linear relationship for the complete OMP mixture could not be obtained using these physico-chemical properties. However, a statistically significant relationship was obtained between biological degradation rates and the OMP functional groups. The presence of ethers and carbonyl groups will increase biodegradability, while the presence of amines, ring structures, aliphatic ethers and sulphur will decrease biodegradability. This predictive model based on functional groups can be used by drinking water companies to make a first estimate whether a newly detected compound will be biodegraded during the first metre of RBF or that additional treatment is required. In addition, the influence of active and inactive biomass (biosorption), sand grains and the water matrix on OMP sorption was found to be negligible under the conditions investigated in this study. Retardation factors for most compounds were close to 1, indicating mobile behaviour of these compounds during soil passage. Adaptation of the biomass towards the dosed OMPs was not observed for a 6 month period, implying that new developed RBF sites might not be able to biodegrade compounds such as atrazine and sulfamethoxazole in the first few months of operation.


Subject(s)
Rivers , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Adsorption , Atrazine/metabolism , Biodegradation, Environmental , Filtration , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Quantitative Structure-Activity Relationship , Sulfamethoxazole/metabolism , Water Pollutants, Chemical/analysis , Water Quality
11.
Water Sci Technol ; 63(3): 416-23, 2011.
Article in English | MEDLINE | ID: mdl-21278462

ABSTRACT

Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.


Subject(s)
Charcoal/chemistry , Organic Chemicals/chemistry , Pharmaceutical Preparations/isolation & purification , Adsorption , Surface Properties , Waste Disposal, Fluid , Water/standards , Water Pollutants, Chemical/isolation & purification , Water Purification
12.
Water Sci Technol ; 61(10): 2603-10, 2010.
Article in English | MEDLINE | ID: mdl-20453334

ABSTRACT

Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.


Subject(s)
Carbon/isolation & purification , Filtration/methods , Organic Chemicals/isolation & purification , Osmosis , Rivers , Water Pollutants, Chemical/isolation & purification , Water Pollutants/isolation & purification , Benzene Derivatives/isolation & purification , Dioxanes/analysis , Equipment Design , Filtration/instrumentation , Glycine/analogs & derivatives , Glycine/isolation & purification , N-Methylaspartate/isolation & purification , Naphthalenes/isolation & purification , Glyphosate
13.
Water Res ; 44(10): 3077-86, 2010 May.
Article in English | MEDLINE | ID: mdl-20236679

ABSTRACT

Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R(2)) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model.


Subject(s)
Charcoal/chemistry , Models, Theoretical , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Quantitative Structure-Activity Relationship
14.
Water Res ; 41(15): 3227-40, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17583761

ABSTRACT

The removal efficiency of several pharmaceutically active compounds from two different surface water types was investigated. Two different nanofiltration (NF) membranes (Trisep TS-80 and Desal HL) were first studied at low feed water recoveries (10%). In a second phase, the combination of an NF unit at higher feed water recovery (80%) with subsequent granular activated carbon (GAC) filtration of the permeate was investigated. Results indicate that removal of the selected pharmaceuticals with NF is mainly influenced by charge effects: negatively charged solutes are better removed, compared with uncharged solutes, which are, in turn, better removed compared with positively charged solutes. This latter trend is mainly due to charge attractions between the negatively charged membrane surface and positively charged solutes. Increasing feed concentrations of positively charged pharmaceuticals lead to increasing rejection values, due to membrane charge-shielding effects. The removal efficiency of pharmaceuticals with the combination NF/GAC is extremely high. This is mainly due to an increased adsorption capacity of the activated carbon since the largest part of the natural organic matter (NOM) is removed in the NF step. This NOM normally competes with pharmaceuticals for adsorption sites on the carbon.


Subject(s)
Carbon/chemistry , Membranes, Artificial , Pesticides/chemistry , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Filtration , Netherlands , Rivers , Static Electricity , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...