Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(6)2021 06 20.
Article in English | MEDLINE | ID: mdl-34203111

ABSTRACT

Rv3852 is a unique nucleoid-associated protein (NAP) found exclusively in Mycobacterium tuberculosis (Mtb) and closely related species. Although annotated as H-NS, we showed previously that it is very different from H-NS in its properties and is distinct from other NAPs, anchoring to cell membrane by virtue of possessing a C-terminal transmembrane helix. Here, we investigated the role of Rv3852 in Mtb in organizing architecture or synthesis machinery of cell wall by protein-protein interaction approach. We demonstrated a direct physical interaction of Rv3852 with Wag31, an important cell shape and cell wall integrity determinant essential in Mtb. Wag31 localizes to the cell poles and possibly acts as a scaffold for cell wall synthesis proteins, resulting in polar cell growth in Mtb. Ectopic expression of Rv3852 in M. smegmatis resulted in its interaction with Wag31 orthologue DivIVAMsm. Binding of the NAP to Wag31 appears to be necessary for fine-tuning Wag31 localization to the cell poles, enabling complex cell wall synthesis in Mtb. In Rv3852 knockout background, Wag31 is mislocalized resulting in disturbed nascent peptidoglycan synthesis, suggesting that the NAP acts as a driver for localization of Wag31 to the cell poles. While this novel association between these two proteins presents one of the mechanisms to structure the elaborate multi-layered cell envelope of Mtb, it also exemplifies a new function for a NAP in mycobacteria.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Peptidoglycan/biosynthesis , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Peptidoglycan/genetics
2.
Article in English | MEDLINE | ID: mdl-33042857

ABSTRACT

Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of Mycobacterium tuberculosis (Mtb) in the pathogen's interaction with the host. Among its uncanny ways of dealing with the host with umpteen strategies for survival and persistence in humans, CtpF is identified as a new player. The levels of ctpF are upregulated in macrophage stresses like hypoxia, high nitric oxide levels and acidic pH. Using confocal microscopy and fluorimetry, we show that CtpF effluxes calcium in macrophages in early stages of Mtb infection. Downregulation of ctpF expression by conditional knockdown resulted in perturbation of host calcium levels and consequent decreased activation of mTOR. We present a mechanism how calcium efflux by the pathogen inhibits mTOR-dependent autophagy and enhances bacterial survival. Our work highlights how Mtb engages its metal efflux pumps to exploit host autophagic process for its proliferation.


Subject(s)
Mycobacterium tuberculosis , Autophagosomes , Autophagy , Calcium , Host-Pathogen Interactions , Humans , Macrophages , TOR Serine-Threonine Kinases
3.
PLoS One ; 13(9): e0202749, 2018.
Article in English | MEDLINE | ID: mdl-30183750

ABSTRACT

Drug resistant tuberculosis (TB) is a major worldwide health problem. In addition to the bacterial mechanisms, human drug transporters limiting the cellular accumulation and the pharmacological disposition of drugs also influence the efficacy of treatment. Mycobacterium tuberculosis topoisomerase-I (MtTopo-I) is a promising target for antimicrobial treatment. In our previous work we have identified several hit compounds targeting the MtTopo-I by in silico docking. Here we expand the scope of the compounds around three scaffolds associated with potent MtTopo-I inhibition. In addition to measuring the effect of newly generated compounds on MtTopo-I activity, we characterized the compounds' antimicrobial activity, toxicity in human cells, and interactions with human multidrug transporters. Some of the newly developed MtTopo-I inhibitors have strong antimicrobial activity and do not harm mammalian cells. Moreover, our studies revealed significant human ABC drug transporter interactions for several MtTopo-I compounds that may modify their ADME-Tox parameters and cellular effects. Promising new drug candidates may be selected based on these studies for further anti-TB drug development.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Mycobacterium tuberculosis/enzymology , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry , Animals , Cell Line , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Topoisomerase I Inhibitors/toxicity
4.
Tuberculosis (Edinb) ; 103: 52-60, 2017 03.
Article in English | MEDLINE | ID: mdl-28237034

ABSTRACT

There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development.


Subject(s)
Antitubercular Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Drug Design , Machine Learning , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Topoisomerase I Inhibitors/pharmacology , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Bayes Theorem , Computer-Aided Design , DNA Topoisomerases, Type I/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Targeted Therapy , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/growth & development , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Protein Conformation , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/metabolism , Tuberculosis/microbiology
5.
3 Biotech ; 1(4): 247-253, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22558543

ABSTRACT

Information on inoculum load and diversity of native microbial community is an important prerequisite for crop management of microbial origin. Azospirillum has a proven role in benefiting the maize (Zea mays) crop in terms of nutrient (nitrogen) supply as well as plant growth enhancement. Bihar state has highest average national maize productivity although fertilizer consumption is minimum, indicating richness of Azospirillum both in terms of population and diversity in soils. An experiment was planned to generate basic information on Azospirillum population variation in maize soils under different agricultural practices and soil types of Bihar, to identify suitable agricultural practices supporting the target microorganism and efficient Azospirillum strain(s). No tillage, growing traditional maize cultivar, land use history (diara soil having history of maize cultivation), soil organic carbon (>1%) and intercrop with oat supported prevalence of Azospirillum in maize rhizosphere. Native Azospirillum population varied from 1 million to 1 billion/g soil under diverse agricultural practices and soil types. Such richness, however, does not necessarily mean that artificial inoculation of Azospirillum is not required in Bihar soils as 92% of Azospirillum isolates (50 isolates) were poor in nitrogen-fixing ability and 88% were poor on IAA production. Efficient strains of Azospirillum based on growth (three), acetylene reduction assay (three), IAA production (three), broad range of pH (two) and temperature tolerance were identified. The findings suggested that maize crop in Bihar should be inoculated in universal mode rather than site-specific mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...