Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Cancer Res ; 29(19): 3924-3936, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37463063

ABSTRACT

PURPOSE: Personalized medicine attempts to predict survival time for each patient, based on their individual tumor molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of patients with cancer. EXPERIMENTAL DESIGN: This article provides a method that learns a model for predicting the survival time for individual patients with cancer from the PanCancer Atlas: given the (16,335 dimensional) gene expression profiles from 10,173 patients, each having one of 33 cancers, this method uses unsupervised nonnegative matrix factorization (NMF) to reexpress the gene expression data for each patient in terms of 100 learned NMF factors. It then feeds these 100 factors into the Multi-Task Logistic Regression (MTLR) learner to produce cancer-specific models for each of 20 cancers (with >50 uncensored instances); this produces "individual survival distributions" (ISD), which provide survival probabilities at each future time for each individual patient, which provides a patient's risk score and estimated survival time. RESULTS: Our NMF-MTLR concordance indices outperformed the VAECox benchmark by 14.9% overall. We achieved optimal survival prediction using pan-cancer NMF in combination with cancer-specific MTLR models. We provide biological interpretation of the NMF model and clinical implications of ISDs for prognosis and therapeutic response prediction. CONCLUSIONS: NMF-MTLR provides many benefits over other models: superior model discrimination, superior calibration, meaningful survival time estimates, and accurate probabilistic estimates of survival over time for each individual patient. We advocate for the adoption of these cancer survival models in clinical and research settings.


Subject(s)
Neoplasms , Transcriptome , Humans , Algorithms , Neoplasms/genetics
2.
IEEE Trans Biomed Eng ; 70(12): 3389-3400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37339045

ABSTRACT

An Individual Survival Distribution (ISD) models a patient's personalized survival probability at all future time points. Previously, ISD models have been shown to produce accurate and personalized survival estimates (for example, time to relapse or to death) in several clinical applications. However, off-the-shelf neural-network-based ISD models are usually opaque models due to their limited support for meaningful feature selection and uncertainty estimation, which hinders their wide clinical adoption. Here, we introduce a Bayesian-neural-network-based ISD (BNN-ISD) model that produces accurate survival estimates but also quantifies the uncertainty in model's parameter estimation, which can be used to (1) rank the importance of the input features to support feature selection and (2) compute credible intervals around ISDs for clinicians to assess the model's confidence in its prediction. Our BNN-ISD model utilized sparsity-inducing priors to learn a sparse set of weights to enable feature selection. We provide empirical evidence, on 2 synthetic and 3 real-world clinical datasets, that BNN-ISD system can effectively select meaningful features and compute trustworthy credible intervals of the survival distribution for each patient. We observed that our approach accurately recovers feature importance in the synthetic datasets and selects meaningful features for the real-world clinical data as well, while also achieving state-of-the-art survival prediction performance. We also show that these credible regions can aid in clinical decision-making by providing a gauge of the uncertainty of the estimated ISD curves.


Subject(s)
Neural Networks, Computer , Humans , Bayes Theorem , Uncertainty
3.
IEEE Trans Med Imaging ; 41(4): 1000-1003, 2022 04.
Article in English | MEDLINE | ID: mdl-35363607

ABSTRACT

We had released MoNuSAC2020 as one of the largest publicly available, manually annotated, curated, multi-class, and multi-instance medical image segmentation datasets. Based on this dataset, we had organized a challenge at the International Symposium on Biomedical Imaging (ISBI) 2020. Along with the challenge participants, we had published an article summarizing the results and findings of the challenge (Verma et al., 2021). Foucart et al. (2022) in their "Analysis of the MoNuSAC 2020 challenge evaluation and results: metric implementation errors" have pointed ways in which the computation of the segmentation performance metric for the challenge can be corrected or improved. After a careful examination of their analysis, we have found a small bug in our code and an erroneous column-header swap in one of our result tables. Here, we present our response to their analysis, and issue an errata. After fixing the bug the challenge rankings remain largely unaffected. On the other hand, two of Foucart et al.'s other suggestions are good for future consideration, but it is not clear that those should be immediately implemented. We thank Foucart et al. for their detailed analysis to help us fix the two errors.


Subject(s)
Cell Nucleus , Histological Techniques , Humans
4.
J Pathol ; 257(1): 17-28, 2022 05.
Article in English | MEDLINE | ID: mdl-35007352

ABSTRACT

We assessed the utility of quantitative features of colon cancer nuclei, extracted from digitized hematoxylin and eosin-stained whole slide images (WSIs), to distinguish between stage II and stage IV colon cancers. Our discovery cohort comprised 100 stage II and stage IV colon cancer cases sourced from the University Hospitals Cleveland Medical Center (UHCMC). We performed initial (independent) model validation on 51 (143) stage II and 79 (54) stage IV colon cancer cases from UHCMC (The Cancer Genome Atlas's Colon Adenocarcinoma, TCGA-COAD, cohort). Our approach comprised the following steps: (1) a fully convolutional deep neural network with VGG-18 architecture was trained to locate cancer on WSIs; (2) another deep-learning model based on Mask-RCNN with Resnet-50 architecture was used to segment all nuclei from within the identified cancer region; (3) a total of 26 641 quantitative morphometric features pertaining to nuclear shape, size, and texture were extracted from within and outside tumor nuclei; (4) a random forest classifier was trained to distinguish between stage II and stage IV colon cancers using the five most discriminatory features selected by the Wilcoxon rank-sum test. Our trained classifier using these top five features yielded an AUC of 0.81 and 0.78, respectively, on the held-out cases in the UHCMC and TCGA validation sets. For 197 TCGA-COAD cases, the Cox proportional hazards model yielded a hazard ratio of 2.20 (95% CI 1.24-3.88) with a concordance index of 0.71, using only the top five features for risk stratification of overall survival. The Kaplan-Meier estimate also showed statistically significant separation between the low-risk and high-risk patients, with a log-rank P value of 0.0097. Finally, unsupervised clustering of the top five features revealed that stage IV colon cancers with peritoneal spread were morphologically more similar to stage II colon cancers with no long-term metastases than to stage IV colon cancers with hematogenous spread. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Pulmonary Disease, Chronic Obstructive , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Computers , Eosine Yellowish-(YS) , Hematoxylin , Humans
5.
Front Oncol ; 12: 915143, 2022.
Article in English | MEDLINE | ID: mdl-36620600

ABSTRACT

Introduction: Medulloblastoma (MB) is a malignant, heterogenous brain tumor. Advances in molecular profiling have led to identifying four molecular subgroups of MB (WNT, SHH, Group 3, Group 4), each with distinct clinical behaviors. We hypothesize that (1) aggressive MB tumors, growing heterogeneously, induce pronounced local structural deformations in the surrounding parenchyma, and (b) these local deformations as captured on Gadolinium (Gd)-enhanced-T1w MRI are independently associated with molecular subgroups, as well as overall survival in MB patients. Methods: In this work, a total of 88 MB studies from 2 institutions were analyzed. Following tumor delineation, Gd-T1w scan for every patient was registered to a normal age-specific T1w-MRI template via deformable registration. Following patient-atlas registration, local structural deformations in the brain parenchyma were obtained for every patient by computing statistics from deformation magnitudes obtained from every 5mm annular region, 0 < d < 60 mm, where d is the distance from the tumor infiltrating edge. Results: Multi-class comparison via ANOVA yielded significant differences between deformation magnitudes obtained for Group 3, Group 4, and SHH molecular subgroups, observed up to 60-mm outside the tumor edge. Additionally, Kaplan-Meier survival analysis showed that the local deformation statistics, combined with the current clinical risk-stratification approaches (molecular subgroup information and Chang's classification), could identify significant differences between high-risk and low-risk survival groups, achieving better performance results than using any of these approaches individually. Discussion: These preliminary findings suggest there exists significant association of our tumor-induced deformation descriptor with overall survival in MB, and that there could be an added value in using the proposed radiomic descriptor along with the current risk classification approaches, towards more reliable risk assessment in pediatric MB.

6.
IEEE Trans Med Imaging ; 40(12): 3413-3423, 2021 12.
Article in English | MEDLINE | ID: mdl-34086562

ABSTRACT

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.


Subject(s)
Algorithms , Cell Nucleus , Humans , Image Processing, Computer-Assisted
8.
Radiol Artif Intell ; 2(6): e190168, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33330847

ABSTRACT

PURPOSE: To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM). MATERIALS AND METHODS: In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation. The validation set was obtained from the Ivy Glioblastoma Atlas Project database, for which the percentage extent of 11 histologic attributes was available on corresponding histopathologic specimens of the resected tumor. Following expert annotations of the tumor habitat (necrotic core, enhancing tumor, and FLAIR-hyperintense subcompartments), 1008 radiomic descriptors (eg, Haralick texture features, Laws energy features, co-occurrence of local anisotropic gradient orientations [CoLIAGe]) were extracted from the three MRI sequences. The top radiomic features were obtained from each subcompartment in the training set on the basis of their ability to risk-stratify patients according to PFS. These features were then concatenated to create a radiomics risk score (RRS). The RRS was independently validated on a holdout set. In addition, correlations (P < .05) of RRS features were computed, with the percentage extent of the 11 histopathologic attributes, using Spearman correlation analysis. RESULTS: RRS yielded a concordance index of 0.80 on the validation set and constituted radiomic features, including Laws (capture edges, waves, ripple patterns) and CoLIAGe (capture disease heterogeneity) from enhancing tumor and FLAIR hyperintensity. These radiomic features were correlated with histopathologic attributes associated with disease aggressiveness in GBM, particularly tumor infiltration (P = .0044) and hyperplastic blood vessels (P = .0005). CONCLUSION: Preliminary findings demonstrated significant associations of prognostic radiomic features with disease-specific histologic attributes, with implications for risk-stratifying patients with GBM for personalized treatment decisions. Supplemental material is available for this article. © RSNA, 2020.

9.
Med Phys ; 47(12): 6029-6038, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33176026

ABSTRACT

PURPOSE: There is an increasing availability of large imaging cohorts [such as through The Cancer Imaging Archive (TCIA)] for computational model development and imaging research. To ensure development of generalizable computerized models, there is a need to quickly determine relative quality differences in these cohorts, especially when considering MRI datasets which can exhibit wide variations in image appearance. The purpose of this study is to present a quantitative quality control tool, MRQy, to help interrogate MR imaging datasets for: (a) site- or scanner-specific variations in image resolution or image contrast, and (b) imaging artifacts such as noise or inhomogeneity; which need correction prior to model development. METHODS: Unlike existing imaging quality control tools, MRQy has been generalized to work with images from any body region to efficiently extract a series of quality measures (e.g., noise ratios, variation metrics) and MR image metadata (e.g., voxel resolution and image dimensions). MRQy also offers a specialized HTML5-based front-end designed for real-time filtering and trend visualization of quality measures. RESULTS: MRQy was used to evaluate (a) n = 133 brain MRIs from TCIA (7 sites) and (b) n = 104 rectal MRIs (3 local sites). MRQy measures revealed significant site-specific variations in both cohorts, indicating potential batch effects. Before processing, MRQy measures could be used to identify each of the seven sites within the TCIA cohort with 87.5%, 86.4%, 90%, 93%, 90%, 60%, and 92.9% accuracy and the three sites within the rectal cohort with 91%, 82.8%, and 88.9% accuracy using unsupervised clustering. After processing, none of the sites could be distinctively clustered via MRQy measures in either cohort; suggesting that batch effects had been largely accounted for. Marked differences in specific MRQy measures were also able to identify outlier MRI datasets that needed to be corrected for common acquisition artifacts. CONCLUSIONS: MRQy is designed to be a standalone, unsupervised tool that can be efficiently run on a standard desktop computer. It has been made freely accessible and open-source at http://github.com/ccipd/MRQy for community use and feedback.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Cohort Studies , Humans , Image Processing, Computer-Assisted , Quality Control
10.
Med Phys ; 47(12): 6039-6052, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33118182

ABSTRACT

PURPOSE: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS: From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES: We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS: The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.


Subject(s)
Glioblastoma , Cohort Studies , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Reproducibility of Results
11.
Clin Cancer Res ; 26(8): 1866-1876, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32079590

ABSTRACT

PURPOSE: To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways. EXPERIMENTAL DESIGN: Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; n = 130), Ivy GAP (n = 32), and Cleveland Clinic (n = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort. For every study, following expert segmentation of tumor subcompartments (necrotic core, enhancing tumor, peritumoral edema), 936 3D radiomic features were extracted from each subcompartment across all MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every protocol to predict PFS on the training cohort (n = 130) and evaluated on the holdout cohort (n = 73). Further, Gene Ontology and single-sample gene set enrichment analysis were used to identify specific molecular signaling pathway networks associated with RRS features. RESULTS: Twenty-five radiomic features from the tumor habitat yielded the RRS. A combination of RRS with clinical (age and gender) and molecular features (MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P = 0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. CONCLUSIONS: Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI may also be significantly associated with key biological processes that affect response to chemotherapy in GBM.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/mortality , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Mutation , Risk Assessment/methods , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Middle Aged , Prognosis , Signal Transduction , Survival Rate , Young Adult
12.
IEEE Trans Med Imaging ; 39(5): 1380-1391, 2020 05.
Article in English | MEDLINE | ID: mdl-31647422

ABSTRACT

Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated. Contestants were given a training set with 30 images from seven organs with annotations of 21,623 individual nuclei. A test dataset with 14 images taken from seven organs, including two organs that did not appear in the training set was released without annotations. Entries were evaluated based on average aggregated Jaccard index (AJI) on the test set to prioritize accurate instance segmentation as opposed to mere semantic segmentation. More than half the teams that completed the challenge outperformed a previous baseline. Among the trends observed that contributed to increased accuracy were the use of color normalization as well as heavy data augmentation. Additionally, fully convolutional networks inspired by variants of U-Net, FCN, and Mask-RCNN were popularly used, typically based on ResNet or VGG base architectures. Watershed segmentation on predicted semantic segmentation maps was a popular post-processing strategy. Several of the top techniques compared favorably to an individual human annotator and can be used with confidence for nuclear morphometrics.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Cell Nucleus , Humans
13.
IEEE Trans Med Imaging ; 36(7): 1550-1560, 2017 07.
Article in English | MEDLINE | ID: mdl-28287963

ABSTRACT

Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques, such as Otsu thresholding and watershed segmentation, do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances. However, training machine learning algorithms requires data sets of images, in which a vast number of nuclei have been annotated. Publicly accessible and annotated data sets, along with widely agreed upon metrics to compare techniques, have catalyzed tremendous innovation and progress on other image classification problems, particularly in object recognition. Inspired by their success, we introduce a large publicly accessible data set of hematoxylin and eosin (H&E)-stained tissue images with more than 21000 painstakingly annotated nuclear boundaries, whose quality was validated by a medical doctor. Because our data set is taken from multiple hospitals and includes a diversity of nuclear appearances from several patients, disease states, and organs, techniques trained on it are likely to generalize well and work right out-of-the-box on other H&E-stained images. We also propose a new metric to evaluate nuclear segmentation results that penalizes object- and pixel-level errors in a unified manner, unlike previous metrics that penalize only one type of error. We also propose a segmentation technique based on deep learning that lays a special emphasis on identifying the nuclear boundaries, including those between the touching or overlapping nuclei, and works well on a diverse set of test images.


Subject(s)
Machine Learning , Algorithms , Cell Nucleus , Humans , Image Processing, Computer-Assisted , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...