Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Cell ; 35(3): 1134-1159, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36585808

ABSTRACT

Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaßLIM1a. CaßLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaßLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.


Subject(s)
Ascomycota , Cicer , Transcription Factors , Ascomycota/genetics , Ascomycota/metabolism , Cicer/genetics , Cicer/metabolism , Cicer/microbiology , Lignin/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Fungi (Basel) ; 8(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36547579

ABSTRACT

The corm rot of saffron caused by Fusarium oxysporum (Fox) has been reported to be the most destructive fungal disease of the herb globally. The pathogen, Fusarium oxysporum R1 (Fox R1) isolated by our group from Kashmir, India, was found to be different from Fusarium oxysporum f.sp. gladioli commonly reported corm rot agent of saffron. In the present study, Fox R1 was further characterized using housekeeping genes and pathogenicity tests, as Fusarium oxysporum R1 f.sp. iridacearum race 4. Though Fox R1 invaded the saffron plant through both corm and roots, the corm was found to be the preferred site of infection. In addition, the route of pathogen movement wastracked by monitoring visual symptoms, semi-quantitative PCR, quantitative-PCR (q-PCR), real-time imaging of egfp-tagged Fusarium oxysporum R1, and Fox R1 load quantification. This study is the first study of its kind on the bidirectional pathogenesis from corm to roots and vice-versa, as the literature only reports unidirectional upward movement from roots to other parts of the plant. In addition, the colonization pattern of Fox R1 in saffron corms and roots was studied. The present study involved a systematic elucidation of the mode and mechanism of pathogenesis in the saffron Fusarium oxysporum strain R1 pathosystem.

3.
Biotechnol Biofuels ; 14(1): 31, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494787

ABSTRACT

BACKGROUND: Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus. RESULTS: Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome. CONCLUSIONS: In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.

4.
3 Biotech ; 10(3): 117, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32117678

ABSTRACT

Necrotrophic pathogens experience host-generated oxidative stress during pathogenesis. They overcome such hostile environment by intricate mechanisms which are largely understudied. In this article, reference-based transcriptome analysis of a devastating Ascochyta Blight (AB) disease causing chickpea pathogen Ascochyta rabiei was explored to get insights into survival mechanisms under oxidative stress. Here, expression profiling of mock-treated and menadione-treated fungus was carried out by RNA-Seq approach. A significant number of genes in response to oxidative stress were overrepresented, suggestive of a robust and coordinated defense system of A. rabiei. A total 73 differentially expressed genes were filtered out from both the transcriptomes, among them 64 were up-regulated and 9 were found down-regulated. The gene ontology and KEGG mapping were conducted to comprehend the possible regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways. Transcript profiling, KEGG pathway and gene ontology-based enrichment analysis revealed 12 (16.43%) stress responsive factors, 25 (34.24%) virulence associated genes, 10 (13.69%) putative effectors and 28 (38.35%) important interacting proteins associated with various metabolic pathways. In addition, genes with differential expression were further explored for underlying putative pathogenicity factors. We identified five genes ST47_g10291, ST47_g9396, ST47_g10294, ST47_g4395, and ST47_g7191 that were common to stress and fungal pathogenicity. The factors recognized in this work can be used to establish molecular tools to explain the regulatory gene networks engaged in stress response of fungal pathogens and disease management.

5.
Mol Inform ; 38(8-9): e1800151, 2019 08.
Article in English | MEDLINE | ID: mdl-31066240

ABSTRACT

The toxic potentials of carbamates to human and non target organisms are of public concern in relation to society and ecosystem for their unregulated and indiscriminate use. No computational study was found on rat and mouse oral toxicity for carbamate pesticides. In this context, carbamate pesticides were collected from ChemIDplus databases for the modeling study. A series of local QSTR model for both rat and mouse oral toxicity of carbamate derivatives were developed according to OECD principle from 2D descriptors by using Genetic Algorithm (GA) as feature selection chemometric tools using QSARINS software. All the models indicate the importance of auto correlation descriptors related to charge, I-State, atom type E state for fragment -O- in relation to acute mammalian toxicity. Reliability of predictions of the models was verified by applicability domain (AD) and prediction reliability index. Finally developed models were applied to unknown carbamate pesticides to evaluate their predictions and AD. The toxic nature of the prioritized compounds with structural alerts were commented in a consensus way. Additional toxicity-toxicity relationship studies (QTTR) between these two responses with similar findings promoted further application of QTTR models in absence of one response. These findings may help the scientific community in prioritizing potentially hazardous pesticides of carbamate and related classes.


Subject(s)
Carbamates/toxicity , Cholinesterase Inhibitors/toxicity , Pesticides/toxicity , Quantitative Structure-Activity Relationship , Administration, Oral , Animals , Carbamates/administration & dosage , Carbamates/chemistry , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Mice , Models, Molecular , Molecular Structure , Pesticides/chemistry , Rats
6.
Biotechnol Biofuels ; 11: 154, 2018.
Article in English | MEDLINE | ID: mdl-29991962

ABSTRACT

BACKGROUND: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysaccharide-based biorefinery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to find the important enzymes for polymer utilization. RESULTS: Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin degradation and PHA production. We also applied label-free quantitative proteomic approach to identify the expression profile on monoaromatic compound vanillic acid (VA) and polyaromatic kraft lignin (KL). Genomic and proteomic analysis simultaneously discovered Dyp-type peroxidase, peroxidases, glycolate oxidase, aldehyde oxidase, GMC oxidoreductase, laccases, quinone oxidoreductase, dioxygenases, monooxygenases, glutathione-dependent etherases, dehydrogenases, reductases, and methyltransferases and various other recently reported enzyme systems such as superoxide dismutases or catalase-peroxidase for lignin degradation. A strong stress response and detoxification mechanism was discovered. The two important gene clusters for lignin degradation and three PHA polymerase spanning gene clusters were identified and all the clusters were functionally active on KL-VA. CONCLUSIONS: The unusual aerobic '-CoA'-mediated degradation pathway of phenylacetate and benzoate (reported only in 16 and 4-5% of total sequenced bacterial genomes), peroxidase-accessory enzyme system, and fenton chemistry based are the major pathways observed for lignin degradation. Both ortho and meta ring cleavage pathways for aromatic compound degradation were observed in expression profile. Genomic and proteomic approaches provided validation to this strain's robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.

7.
Genome Announc ; 6(26)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29954905

ABSTRACT

We report here the 3.6-Mb draft genome of Bacillus altitudinis Lc5, a potential plant growth promoter and an active antagonistic endophyte of black rice. This genome study will provide better insights into the strain's mechanisms for plant growth promotion and biocontrol, thus facilitating its application in organic agriculture.

8.
Front Plant Sci ; 8: 1037, 2017.
Article in English | MEDLINE | ID: mdl-28659964

ABSTRACT

Transcription factors (TFs) are the key players in gene expression and their study is highly significant for shedding light on the molecular mechanisms and evolutionary history of organisms. During host-pathogen interaction, extensive reprogramming of gene expression facilitated by TFs is likely to occur in both host and pathogen. To date, the knowledge about TF repertoire in filamentous fungi is in infancy. The necrotrophic fungus Ascochyta rabiei, that causes destructive Ascochyta blight (AB) disease of chickpea (Cicer arietinum), demands more comprehensive study for better understanding of Ascochyta-legume pathosystem. In the present study, we performed the genome-wide identification and analysis of TFs in A. rabiei. Taking advantage of A. rabiei genome sequence, we used a bioinformatic approach to predict the TF repertoire of A. rabiei. For identification and classification of A. rabiei TFs, we designed a comprehensive pipeline using a combination of BLAST and InterProScan software. A total of 381 A. rabiei TFs were predicted and divided into 32 fungal specific families of TFs. The gene structure, domain organization and phylogenetic analysis of abundant families of A. rabiei TFs were also carried out. Comparative study of A. rabiei TFs with that of other necrotrophic, biotrophic, hemibiotrophic, symbiotic, and saprotrophic fungi was performed. It suggested presence of both conserved as well as unique features among them. Moreover, cis-acting elements on promoter sequences of earlier predicted A. rabiei secretome were also identified. With the help of published A. rabiei transcriptome data, the differential expression of TF and secretory protein coding genes was analyzed. Furthermore, comprehensive expression analysis of few selected A. rabiei TFs using quantitative real-time polymerase chain reaction revealed variety of expression patterns during host colonization. These genes were expressed in at least one of the time points tested post infection. Overall, this study illustrates the first genome-wide identification and analysis of TF repertoire of A. rabiei. This work would provide the basis for further studies to dissect role of TFs in the molecular mechanisms during A. rabiei-chickpea interactions.

9.
Genome Announc ; 4(5)2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27795274

ABSTRACT

The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO2)-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO3) as the sole carbon source. Here, we report the genome sequence of 5.07 Mb Serratia sp. ISTD04.

10.
Genome Announc ; 4(6)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27811115

ABSTRACT

We report here the genome sequence of Pandoraea sp. ISTKB, a betaproteobacterium isolated from rhizospheric soil in the backwaters of Alappuzha, Kerala, India. The strain is alkalotolerant and grows on medium containing lignin as a sole carbon source. Genes and pathways related to lignin degradation were complemented by genomic analysis.

11.
Sci Rep ; 6: 24638, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27091329

ABSTRACT

Constant evolutionary pressure acting on pathogens refines their molecular strategies to attain successful pathogenesis. Recent studies have shown that pathogenicity mechanisms of necrotrophic fungi are far more intricate than earlier evaluated. However, only a few studies have explored necrotrophic fungal pathogens. Ascochyta rabiei is a necrotrophic fungus that causes devastating blight disease of chickpea (Cicer arietinum). Here, we report a 34.6 megabase draft genome assembly of A. rabiei. The genome assembly covered more than 99% of the gene space and 4,259 simple sequence repeats were identified in the assembly. A total of 10,596 high confidence protein-coding genes were predicted which includes a large and diverse inventory of secretory proteins, transporters and primary and secondary metabolism enzymes reflecting the necrotrophic lifestyle of A. rabiei. A wide range of genes encoding carbohydrate-active enzymes capable for degradation of complex polysaccharides were also identified. Comprehensive analysis predicted a set of 758 secretory proteins including both classical and non-classical secreted proteins. Several of these predicted secretory proteins showed high cysteine content and numerous tandem repeats. Together, our analyses would broadly expand our knowledge and offer insights into the pathogenesis and necrotrophic lifestyle of fungal phytopathogens.


Subject(s)
Ascomycota/genetics , Genome, Fungal , Ascomycota/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Sequence Annotation , Secretory Pathway , Virulence/genetics
12.
PLoS One ; 9(4): e95989, 2014.
Article in English | MEDLINE | ID: mdl-24776850

ABSTRACT

Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.


Subject(s)
Ascomycota/enzymology , Catalytic Domain , Flavin Mononucleotide/metabolism , Molecular Docking Simulation , NADPH Dehydrogenase/chemistry , NADPH Dehydrogenase/metabolism , Amino Acid Sequence , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Molecular Sequence Data , NADPH Dehydrogenase/classification , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Thermodynamics
13.
Sci Rep ; 4: 4013, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24500274

ABSTRACT

In this study, we systematically identify Old Yellow Enzymes (OYEs) from a diverse range of economically important fungi representing different ecology and lifestyle. Using active site residues and sequence alignments, we present a classification for these proteins into three distinct classes including a novel class (Class III) and assign names to sequences. Our in-depth phylogenetic analysis suggests a complex history of lineage-specific expansion and contraction for the OYE gene family in fungi. Comparative analyses reveal remarkable diversity in the number and classes of OYE among fungi. Quantitative real-time PCR (qRT-PCR) of Ascochyta rabiei OYEs indicates differential expression of OYE genes during oxidative stress and plant infection. This study shows relationship of OYE with fungal ecology and lifestyle, and provides a foundation for future functional analysis and characterization of OYE gene family.


Subject(s)
Ascomycota/enzymology , Ascomycota/genetics , NADPH Dehydrogenase/classification , NADPH Dehydrogenase/genetics , Amino Acid Sequence , Cell Lineage/genetics , Evolution, Molecular , Gene Expression Profiling , Genetic Variation , NADPH Dehydrogenase/biosynthesis , Oxidative Stress , Phylogeny , Sequence Alignment
14.
J Microbiol Methods ; 88(3): 386-92, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22248441

ABSTRACT

Bipolaris sorokiniana, the causal agent of spot blotch of wheat, significantly reduces grain yield worldwide. In order to study pathogenic mechanisms of the fungus, conditions for efficient transformation using Agrobacterium-mediated transformation were investigated. To study different stages of hyphal fusion and pathogenic mechanisms of the fungus, two fluorescence markers viz. the red fluorescent protein (DsRed-Express) and the green fluorescent protein (EGFP1) were constitutively expressed. Southern hybridizations confirmed the presence of T-DNA in all hygromycin B or geneticin resistant transformants, and also showed random and single copy integration. Fluorescence microscopy suggested the high level expression of both DsRed and EGFP fluorescent proteins in spores and mycelia. The results signify that DsRed and EGFP can be used as efficient reporter gene for monitoring B. sorokiniana hyphal fusion as well as colonization in the host tissues. This work will be useful to develop methodologies for understanding the mechanisms of Bipolaris-wheat interaction and functional genomics of B. sorokiniana for various applications including insertional mutagenesis, targeted disruption of specific genes, ectopic complementation of loss-of-function strains and over-expression.


Subject(s)
Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Gene Transfer Techniques , Transformation, Genetic , Triticum/microbiology , Blotting, Southern , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Plant Diseases/microbiology
15.
J Virol ; 81(10): 5339-48, 2007 May.
Article in English | MEDLINE | ID: mdl-17329345

ABSTRACT

The coronavirus membrane (M) protein carboxy tail interacts with the nucleocapsid during virus assembly. Previous studies demonstrated that the two terminal residues are important, and the charged residue (R227) in the penultimate position in the mouse hepatitis coronavirus (MHV) A59 M protein was suggested to participate in intermolecular interactions with negative charges in the nucleocapsid (N) protein. To determine the significance of the positive charge at position 227, we substituted the arginine with lysine (K), aspartic acid (D), glutamic acid (E), or alanine (A) and studied these by reverse genetics in the context of a MHV full-length infectious clone. Viruses with wild-type phenotype were readily recovered with the K or A substitutions. In contrast, negative-charge substitutions were not tolerated as well. In all recovered R227D viruses the negative charge was replaced with heterologous residues resulting from apparent template switching during negative-strand synthesis of subgenomic RNA 7. An additional second-site compensatory V202I substitution was present in some viruses. Recovered R227E viruses had second-site changes within the M protein carboxy tail that were partially compensatory. Significantly, most of the second site changes in the R227E mutant viruses were previously shown to compensate for the removal of negative charges in the N protein. Our results strongly indicate that a positive charge is not absolutely required. It is clear that other regions within the tail must also be involved in helping mediate interactions between the M protein and the nucleocapsid.


Subject(s)
Murine hepatitis virus/physiology , Viral Matrix Proteins/physiology , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Coronavirus M Proteins , Coronavirus Nucleocapsid Proteins , Cricetinae , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Molecular Sequence Data , Murine hepatitis virus/genetics , Murine hepatitis virus/growth & development , Mutagenesis, Site-Directed , Nucleocapsid Proteins/metabolism , Protein Binding , Suppression, Genetic , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Plaque Assay
17.
J Virol ; 80(9): 4344-55, 2006 May.
Article in English | MEDLINE | ID: mdl-16611893

ABSTRACT

The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly.


Subject(s)
Murine hepatitis virus/chemistry , Murine hepatitis virus/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Amino Acid Sequence , Animals , Aspartic Acid/genetics , Aspartic Acid/metabolism , Cell Line , Coronavirus Nucleocapsid Proteins , Ions/chemistry , Isoelectric Point , Kinetics , Mice , Molecular Sequence Data , Murine hepatitis virus/genetics , Mutation/genetics , Nucleocapsid Proteins/genetics , Sequence Alignment , Static Electricity
18.
Biochem Biophys Res Commun ; 326(2): 290-7, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15582576

ABSTRACT

Ligand binding experiments on three mutants in the distal heme pocket of Vitreoscilla hemoglobin (GlnE7His, ProE8Ala, and GlnE7His,ProE8Ala) were used to probe the role of GlnE7 and ProE8 in the pocket's unusual structure. The oxygen dissociation constants for the wild type, E8Ala mutant, and E7His mutant proteins were 4.5, 4.7, and 1.7microM, respectively; the K(d) for the double mutant was not determinable by our technique. Visible-Soret spectra of the carbonyl and cyanyl forms and FT-IR of the carbonyl form of the E8 mutant were similar to those of the wild type; the opposite was true for the GlnE7His and GlnE7His,ProE8Ala mutants, which also differed from wild type in the visible-Soret spectra of their oxidized forms. Models of the effects of the mutations on distal pocket structure were consistent with the experimental findings, particularly the larger effects of the GlnE7His change.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heme/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Mutation/genetics , Vitreoscilla/genetics , Bacterial Proteins/genetics , Binding Sites , Carbon Monoxide/metabolism , Escherichia coli/genetics , Hemoglobins/genetics , Models, Molecular , Oxygen/metabolism , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Truncated Hemoglobins
SELECTION OF CITATIONS
SEARCH DETAIL
...