Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(6): 1428-1441.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723638

ABSTRACT

Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.


Subject(s)
B-Lymphocytes , Animals , B-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology , Lymphocyte Activation/immunology , Antigens, Bacterial/immunology , Somatic Hypermutation, Immunoglobulin , Peptide Library , Lymph Nodes/immunology , Cell Surface Display Techniques , Symbiosis/immunology , Immunoglobulin G/immunology , Immunoglobulin A/immunology
2.
Mol Immunol ; 152: 153-161, 2022 12.
Article in English | MEDLINE | ID: mdl-36368122

ABSTRACT

Antibodies represent key effectors of the adaptive immune system. The specificity of antibodies is an established hallmark of the immune response. However, a certain proportion of antibodies exhibit limited promiscuity or multireactivity. Germline antibodies display plasticity which imparts multispecificity to enhance the antibody repertoire. Surprisingly, even affinity matured antibodies display such plasticity and multireactivity enabling their binding to more than one antigen. We propose that antibody multispecificity is a physiological requirement to expand the antibody repertoire at the germline level and to tolerate plasticity in antigens at the mature level. This property of the humoral immune response may attenuate the ability of infectious RNA viruses such as influenza, HIV and SARS-CoV-2 to acquire mutations that render resistance to neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antigens , Immunity, Humoral
3.
Mol Immunol ; 114: 149-161, 2019 10.
Article in English | MEDLINE | ID: mdl-31352231

ABSTRACT

Vaccines developed against influenza lose efficacy primarily due to the ability of the virus to generate variants that escape recognition of the immune system. Frequent accumulation of mutations in the virus surface proteins is believed to be responsible for immune evasion. Surprisingly, despite the high mutation rate, the appearance of new viral strains through antigenic drift is slow. This delay in the emergence of new strains has been explained by several different hypotheses over the past decade. In the present study, we have probed the antibody response against multiple clades of influenza neutralizing epitope in the context of antigenic drift. Both, the serum IgG and the monoclonal antibodies raised against the epitope showed strong predisposition against different variants even with non-conservative mutations. The physiologically relevant binding with hemagglutinin protein and its variants revealed multi-reactive recognition potential of human single-chain variable fragments (scFvs). Differential scope for antibody cross-reactivity was evident among different clades that could counterbalance the effect of antigenic drift. Our findings reveal that the majority of epitope variants, which could manifest as single or double amino acid substitutions, would not escape immune surveillance. However, mutations beneficial for the virus do appear causing effective antigenic changes. It is suggested that inherent antibody promiscuity could reduce the deleterious effects of natural mutations on antigen recognition and may be responsible for the delay in the appearance of new antigenic variants of the fast-mutating viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Cross Reactions/immunology , Immune Evasion/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Amino Acid Substitution/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Mice
4.
Gut Pathog ; 8: 55, 2016.
Article in English | MEDLINE | ID: mdl-27833663

ABSTRACT

BACKGROUND: Staphylococcus xylosus is coagulase-negative staphylococci (CNS), found occasionally on the skin of humans but recurrently on other mammals. Recent reports suggest that this commensal bacterium may cause diseases in humans and other animals. In this study, we present the first report of whole genome sequencing of S. xylosus strain DMB3-Bh1, which was isolated from the stool of a mouse. RESULTS: The draft genome of S. xylosus strain DMB3-Bh1 consisted of 2,81,0255 bp with G+C content of 32.7 mol%, 2623 predicted coding sequences (CDSs) and 58 RNAs. The final assembly contained 12 contigs of total size 2,81,0255 bp with N50 contig length of 4,37,962 bp and the largest contig assembled measured 7,61,338 bp. Further, an interspecies comparative genomic analysis through rapid annotation using subsystem technology server was achieved with Staphylococcus aureus RF122 that revealed 36 genes having similarity with S. xylosus DMB3-Bh1. 35 genes encoded for virulence, disease and defense and 1 gene encoded for phages, prophages and transposable elements. CONCLUSIONS: These results suggest co linearity in genes between S. xylosus DMB3-Bh1 and S. aureus RF122 that contribute to pathogenicity and might be the result of horizontal gene transfer. The study indicates that S. xylosus DMB3-Bh1 may be a potential emerging pathogen for rodents.

6.
Gut Pathog ; 6: 28, 2014.
Article in English | MEDLINE | ID: mdl-25028600

ABSTRACT

BACKGROUND: Shigellosis is an acute form of gastroenteritis caused by the bacteria belonging to the genus Shigella. It is the most common cause of morbidity and mortality in children. Shigella belongs to the family Enterobactericeae, which is a Gram-negative and rod shaped bacterium. In the present study, we report the draft genome of Shigella dysenteriae strain SD1D, which was isolated from the stool sample of a healthy individual. RESULTS: Based on 16S rRNA gene sequence and phylogenetic analysis, the strain SD1D was identified as Shigella dysenteriae. The draft genome of SD1D consisted of 45, 93, 159 bp with a G + C content of 50.7%, 4, 960 predicted CDSs, 75 tRNAs and 2 rRNAs. The final assembly contained 146 contigs of total length 45, 93, 159 bp with N50 contig length of 77, 053 bp; the largest contig assembled measured 3, 85, 550 bp. CONCLUSIONS: We have for the first time performed the whole genome sequencing of Shigella dysenteriae strain SD1D. The comparative genomic analysis revealed several genes responsible for the pathogenesis, virulence, defense, resistance to antibiotics and toxic compounds, multidrug resistance efflux pumps and other genomic features of the bacterium.

7.
Gut Pathog ; 6(1): 8, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24721679

ABSTRACT

BACKGROUND: The genus Salmonella is Gram-negative which belongs to the family Enterobacteriaceae. In this study, we have sequenced the whole genome of the strain DMA-1, which was isolated from mouse stool sample and identified as Salmonella enterica subspecies salamae. RESULTS: The strain DMA-1 was closely related at the 16S rRNA gene sequence level with the members of the genus Salmonella: Salmonella enterica subspecies salamae DSM 9220T (100%), followed by Salmonella enterica subspecies diarizonae (99.1%), Salmonella enterica subspecies enterica (99.0%) and Salmonella enterica subspecies indica (98.5%). We obtained the draft genome of S. enterica subspecies salamae strain DMA-1 with a size of 4,826,209 bp and mean G+C content of 52.0 mol%. CONCLUSIONS: We for the first time, sequenced the entire genome of the strain DMA-1 which was isolated from the mouse stool sample and identified it as Salmonella enterica, sub species salamae. Further, we subjected the whole genome sequencing data for annotation that revealed several genes responsible for the pathogenesis, virulence, defense, metabolism and other genomic features.

SELECTION OF CITATIONS
SEARCH DETAIL
...