Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(9): 6667-6675, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32267675

ABSTRACT

Efforts to eradicate Plasmodium vivax malaria are hampered by the presence of hypnozoites, persisting stages in the liver that can reactivate after prolonged periods of time enabling further transmission and causing renewed disease. Large-scale drug screening is needed to identify compounds with antihypnozoite activity, but current platforms rely on time-consuming high-content fluorescence imaging as read-out, limiting assay throughput. We here report an ultrafast and sensitive dual-luciferase-based method to differentiate hypnozoites from liver stage schizonts using a transgenic P. cynomolgi parasite line that contains Nanoluc driven by the constitutive hsp70 promoter, as well as firefly luciferase driven by the schizont-specific lisp2 promoter. The transgenic parasite line showed similar fitness and drug sensitivity profiles of selected compounds to wild type. We demonstrate robust bioluminescence-based detection of hypnozoites in 96-well and 384-well plate formats, setting the stage for implementation in large scale drug screens.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Luciferases/metabolism , Malaria/drug therapy , Plasmodium/drug effects , Animals , Cells, Cultured , Hepatocytes/drug effects , Hepatocytes/parasitology , Luminescent Measurements , Macaca mulatta , Malaria/diagnostic imaging , Optical Imaging , Parasitic Sensitivity Tests
2.
Commun Biol ; 3: 7, 2020.
Article in English | MEDLINE | ID: mdl-31909199

ABSTRACT

Plasmodium vivax malaria is characterized by repeated episodes of blood stage infection (relapses) resulting from activation of dormant stages in the liver, so-called hypnozoites. Transition of hypnozoites into developing schizonts has never been observed. A barrier for studying this has been the lack of a system in which to monitor growth of liver stages. Here, exploiting the unique strengths of the simian hypnozoite model P. cynomolgi, we have developed green-fluorescent (GFP) hypnozoites that turn on red-fluorescent (mCherry) upon activation. The transgenic parasites show full liver stage development, including merozoite release and red blood cell infection. We demonstrate that individual hypnozoites actually can activate and resume development after prolonged culture, providing the last missing evidence of the hypnozoite theory of relapse. The few events identified indicate that hypnozoite activation in vitro is infrequent. This system will further our understanding of the mechanisms of hypnozoite activation and may facilitate drug discovery approaches.


Subject(s)
Genes, Reporter , Malaria/parasitology , Plasmodium cynomolgi/physiology , Reinfection/parasitology , Green Fluorescent Proteins/genetics , Liver/parasitology , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/physiology , Plasmodium cynomolgi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...