Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(9): 094711, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598479

ABSTRACT

Electrical four-terminal sensing at (sub-)micrometer scales enables the characterization of key electromagnetic properties within the semiconductor industry, including materials' resistivity, Hall mobility/carrier density, and magnetoresistance. However, as devices' critical dimensions continue to shrink, significant over/underestimation of properties due to a by-product Joule heating of the probed volume becomes increasingly common. Here, we demonstrate how self-heating effects can be quantified and compensated for via 3ω signals to yield zero-current transfer resistance. Under further assumptions, these signals can be used to characterize selected thermal properties of the probed volume, such as the temperature coefficient of resistance and/or the Seebeck coefficient.

2.
Phys Rev E ; 101(4-1): 042110, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422773

ABSTRACT

In this article, we show how relativistic α-stable processes can be used to explain quasiballistic heat conduction in semiconductors. This is a method that can fit experimental results of ultrafast laser heating in alloys. It also provides a connection to a rich literature on the Feynman-Kac formalism and random processes that transition from a stable Lévy process on short time and length scales to the Brownian motion at larger scales. This transition was captured by a heuristic truncated Lévy distribution in earlier papers. The rigorous Feynman-Kac approach is used to derive sharp bounds for the transition kernel. Future directions are briefly discussed.

3.
Nat Commun ; 9(1): 255, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343700

ABSTRACT

Understanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric. Here, we employ thermoreflectance thermal imaging to directly visualise the 2D temperature field produced by localised heat sources on InGaAs with characteristic widths down to 100 nm. Besides displaying effective thermal performance reductions up to 50% at the active junctions in agreement with prior studies, our steady-state thermal images reveal that, remarkably, 1-3 µm adjacent to submicron devices the crosstalk is actually reduced by up to fourfold. Submicrosecond transient imaging additionally shows responses to be faster than conventionally predicted. A possible explanation based on hydrodynamic heat transport, and some open questions, are discussed.

4.
Adv Mater ; 29(5)2017 Feb.
Article in English | MEDLINE | ID: mdl-27882620

ABSTRACT

The anisotropic basal-plane thermal conductivities of thin black phosphorus obtained from a new four-probe measurement exhibit much higher peak values at low temperatures than previous reports. First principles calculations reveal the important role of crystal defects and weak thickness dependence that is opposite to the case of graphene and graphite due to the absence of reflection symmetry in puckered phosphorene.

5.
Nano Lett ; 15(7): 4269-73, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-25654652

ABSTRACT

Materials with embedded nanoparticles are of considerable interest for thermoelectric applications. Here, we experimentally characterize the effect of nanoparticles on the recently discovered Lévy phonon transport in semiconductor alloys. The fractal space dimension α ≈ 1.55 of quasiballistic (superdiffusive) heat conduction in (ErAs)x:InGaAlAs is virtually independent of the Er content 0.001 < x < 0.1 but instead controlled by alloy scattering of the host matrix. The increased nanoparticle concentration does reduce the diffusive recovery length by an order of magnitude. The bulk conductivity drops by 3-fold, in close agreement with a Callaway model. Our results may provide helpful hints toward engineering superdiffusive heat transport similar to what has been achieved with light in Lévy glasses.

6.
Nano Lett ; 14(5): 2394-400, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24735496

ABSTRACT

The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...