Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830315

ABSTRACT

Changes in the renin-angiotensin system, known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. While the renin-angiotensin system is suppressed during aging, little is known about its regulation and activity within tissues. However, this knowledge is required to successively treat or prevent renal disease in the elderly. Ercc1 is involved in important DNA repair pathways, and when mutated causes accelerated aging phenotypes in humans and mice. In this study, we hypothesized that unrepaired DNA damage contributes to accelerated kidney failure. We tested the use of the renin-activatable near-infrared fluorescent probe ReninSense680™ in progeroid Ercc1d/- mice and compared renin activity levels in vivo to wild-type mice. First, we validated the specificity of the probe by detecting increased intrarenal activity after losartan treatment and the virtual absence of fluorescence in renin knock-out mice. Second, age-related kidney pathology, tubular anisokaryosis, glomerulosclerosis and increased apoptosis were confirmed in the kidneys of 24-week-old Ercc1d/- mice, while initial renal development was normal. Next, we examined the in vivo renin activity in these Ercc1d/- mice. Interestingly, increased intrarenal renin activity was detected by ReninSense in Ercc1d/- compared to WT mice, while their plasma renin concentrations were lower. Hence, this study demonstrates that intrarenal RAS activity does not necessarily run in parallel with circulating renin in the aging mouse. In addition, our study supports the use of this probe for longitudinal imaging of altered RAS signaling in aging.


Subject(s)
Aging/genetics , Angiotensin II/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Glomerulosclerosis, Focal Segmental/genetics , Progeria/genetics , Renal Insufficiency, Chronic/genetics , Renin/genetics , Aging/metabolism , Aging/pathology , Angiotensin II/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , DNA Damage , DNA Repair , DNA-Binding Proteins/deficiency , Disease Models, Animal , Endonucleases/deficiency , Female , Gene Expression Regulation , Glomerular Filtration Rate , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Kidney/metabolism , Kidney/pathology , Losartan/pharmacology , Male , Mice , Mice, Knockout , Progeria/metabolism , Progeria/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renin/metabolism , Renin-Angiotensin System/genetics , Signal Transduction
2.
Cardiovasc Res ; 114(13): 1776-1793, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29931197

ABSTRACT

Aim: Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results: In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFß reduced PGC1α levels, indicating involvement of TGFß signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion: Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Energy Metabolism , Extracellular Matrix Proteins/metabolism , Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Mutation , Myocytes, Smooth Muscle/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/pathology , Cell Respiration , Cells, Cultured , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Humans , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Muscle/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Reactive Oxygen Species/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction
3.
Methods Mol Biol ; 1393: 147-61, 2016.
Article in English | MEDLINE | ID: mdl-27033225

ABSTRACT

Cellular immunotherapy targeting human tumor antigens is a promising strategy to treat solid tumors. Yet clinical results of cellular immunotherapy are disappointing. Moreover, the currently available in vitro human tumor models are not designed to study the optimization of T-cell therapies of solid tumors. Here, we describe a novel assay for multiparametric in situ analysis of therapeutic effects on individual human three-dimensional (3D) tumors. In this assay, tumors of several millimeter diameter are generated from human cancer cell lines of different tumor entities in a collagen type I microenvironment. A newly developed approach for efficient morphological analysis reveals that these in vitro tumors resemble many characteristics of the corresponding clinical cancers such as histological features, immunohistochemical staining patterns, distinct tumor growth compartments and heterogeneous protein expression. To assess the response to therapy with tumor antigen specific T-cells, standardized protocols are described to determine T-cell infiltration and tumor destruction by monitoring soluble factors and tumor growth. Human tumors engineered in 3D collagen scaffolds are excellent in vitro surrogates for avascular tumor stages allowing integrated analyses of the antitumor efficacy of cancer specific immunotherapy in situ.


Subject(s)
Immunotherapy , Neoplasms/therapy , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Cytokines/metabolism , Humans , Paraffin Embedding , Spheroids, Cellular/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Tissue Engineering
4.
J Hypertens ; 34(4): 654-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26828783

ABSTRACT

AIMS: Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. METHODS AND RESULTS: Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the ß-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. CONCLUSION: Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.


Subject(s)
Aneurysm/physiopathology , Angiotensin II Type 1 Receptor Blockers/metabolism , Extracellular Matrix Proteins , Heart Failure/physiopathology , Receptor, Angiotensin, Type 1/metabolism , Renin/metabolism , Animals , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mice , Mice, Transgenic , Renin/antagonists & inhibitors
5.
Mod Pathol ; 28(4): 515-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25394776

ABSTRACT

The potential risk of recurrence and progression in patients with non-muscle-invasive bladder cancer necessitates followup by cystoscopy. The risk of progression to muscle-invasive bladder cancer is estimated based on the European Organisation of Research and Treatment of Cancer score, a combination of several clinicopathological variables. However, pathological assessment is not objective and reproducibility is insufficient. The use of molecular markers could contribute to the estimation of tumor aggressiveness. We recently demonstrated that methylation of GATA2, TBX2, TBX3, and ZIC4 genes could predict progression in Ta tumors. In this study, we aimed to validate the markers in a large patient set using DNA from formalin-fixed and paraffin-embedded tissue. PALGA: the Dutch Pathology Registry was used for patient selection. We included 192 patients with pTaG1/2 bladder cancer of whom 77 experienced progression. Methylation analysis was performed and log-rank analysis was used to calculate the predictive value of each methylation marker for developing progression over time. This analysis showed better progression-free survival in patients with low methylation rates compared with the patients with high methylation rates for all markers (P<0.001) during a followup of ten-years. The combined predictive effect of the methylation markers was analyzed with the Cox-regression method. In this analysis, TBX2, TBX3, and ZIC4 were independent predictors of progression. On the basis of methylation status of TBX2 and TBX3, patients were divided into three new molecular grade groups. Survival analysis showed that only 8% of patients in the low molecular grade group progressed within 5 years. This was 29 and 63% for the intermediate- and high-molecular grade groups. In conclusion, this new molecular-grade based on the combination of TBX2 and TBX3 methylation is an excellent marker for predicting progression to muscle-invasive bladder cancer in patients with primary pTaG1/2 bladder cancer.


Subject(s)
Carcinoma, Transitional Cell/genetics , T-Box Domain Proteins/genetics , Urinary Bladder Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Transitional Cell/pathology , DNA Methylation , Disease Progression , Disease-Free Survival , Female , Humans , Male , Middle Aged , Prognosis , Urinary Bladder Neoplasms/pathology , Young Adult
6.
PLoS One ; 9(9): e106054, 2014.
Article in English | MEDLINE | ID: mdl-25255451

ABSTRACT

BACKGROUND: In this study we set out to investigate the clinically observed relationship between chronic obstructive pulmonary disease (COPD) and aortic aneurysms. We tested the hypothesis that an inherited deficiency of connective tissue might play a role in the combined development of pulmonary emphysema and vascular disease. METHODS: We first determined the prevalence of chronic obstructive pulmonary disease in a clinical cohort of aortic aneurysms patients and arterial occlusive disease patients. Subsequently, we used a combined approach comprising pathological, functional, molecular imaging, immunological and gene expression analysis to reveal the sequence of events that culminates in pulmonary emphysema in aneurysmal Fibulin-4 deficient (Fibulin-4(R)) mice. RESULTS: Here we show that COPD is significantly more prevalent in aneurysm patients compared to arterial occlusive disease patients, independent of smoking, other clinical risk factors and inflammation. In addition, we demonstrate that aneurysmal Fibulin-4(R/R) mice display severe developmental lung emphysema, whereas Fibulin-4(+/R) mice acquire alveolar breakdown with age and upon infectious stress. This vicious circle is further exacerbated by the diminished antiprotease capacity of the lungs and ultimately results in the development of pulmonary emphysema. CONCLUSIONS: Our experimental data identify genetic susceptibility to extracellular matrix degradation and secondary inflammation as the common mechanisms in both COPD and aneurysm formation.


Subject(s)
Aortic Aneurysm/complications , Aortic Aneurysm/pathology , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Pulmonary Emphysema/complications , Aged , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm/metabolism , Cohort Studies , Disease Susceptibility , Down-Regulation/drug effects , Female , Humans , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Matrix Metalloproteinases/metabolism , Mice , Neutrophils/enzymology , Pancreatic Elastase/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , alpha 1-Antitrypsin/metabolism
7.
Eur Urol ; 65(2): 360-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24018021

ABSTRACT

BACKGROUND: Hotspot mutations in the promoter of the gene coding for telomerase reverse transcriptase (TERT) have been described and proposed to activate gene expression. OBJECTIVES: To investigate TERT mutation frequency, spectrum, association with expression and clinical outcome, and potential for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). DESIGN, SETTING, AND PARTICIPANTS: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription-quantitative polymerase chain reaction. The two most frequent mutations were investigated, using a SNaPshot assay, in an independent set of 184 non-muscle-invasive and 173 muscle-invasive UBC (median follow-up: 53 mo and 21 mo, respectively). Voided urine from patients with suspicion of incident UBC (n=174), or under surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease-specific survival, and overall survival. RESULTS AND LIMITATIONS: In the two series, 78 of 111 (70%) and 283 of 357 (79%) tumors harbored TERT mutations, C228T being the most frequent substitution (83% for both series). TERT mutations were not associated with clinical or pathologic parameters, but were more frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC patients. The sensitivity was 62% in incident and 42% in recurrent UBC. A limitation of the study is its retrospective nature. CONCLUSIONS: Somatic TERT promoter mutations are an early, highly prevalent genetic event in UBC and are not associated with TERT mRNA levels or disease outcomes. A SNaPshot assay in urine may help to detect UBC recurrences.


Subject(s)
Biomarkers, Tumor/genetics , Mutation , Promoter Regions, Genetic , Telomerase/genetics , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/genetics , Aged , Biomarkers, Tumor/urine , Cell Line, Tumor , DNA Mutational Analysis , Disease Progression , Disease-Free Survival , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Male , Neoplasm Grading , Neoplasm Recurrence, Local , Neoplasm Staging , Netherlands , Phenotype , Predictive Value of Tests , RNA, Messenger/urine , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Spain , Telomerase/urine , Time Factors , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/urine
8.
Carcinogenesis ; 35(1): 24-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24031028

ABSTRACT

UNLABELLED: Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison with benign tissue. In contrast, however, castration-resistant bone metastases exhibit reduced levels of SOCS2 in comparison with localized or hormone naive, untreated metastatic tumors. In PCa cells, SOCS2 expression is induced by androgens through a mechanism that requires signal transducer and activator of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response to GH. Our results suggest that the use of GH-signaling inhibitors could be of value as a complementary treatment for castration-resistant PCa. SUMMARY: Androgen induced SOCS2 ubiquitin ligase expression and inhibited GH signaling as well as cell proliferation and invasion in PCa, whereas reduced SOCS2 was present in castration-resistant cases. GH-signaling inhibitors might be a complementary therapeutic option for advanced PCa.


Subject(s)
Androgens/metabolism , Human Growth Hormone/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Suppressor of Cytokine Signaling Proteins/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Animals , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Human Growth Hormone/pharmacology , Humans , Insulin-Like Growth Factor I/metabolism , Male , Metribolone/pharmacology , Mice, Inbred C57BL , Mice, Mutant Strains , Middle Aged , Predictive Value of Tests , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/analysis , Suppressor of Cytokine Signaling Proteins/genetics
9.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637614

ABSTRACT

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Subject(s)
DNA Repair , Trichothiodystrophy Syndromes , Animals , Cockayne Syndrome , Humans , Mutation , Transcription Factor TFIIH/genetics , Transcription Factors/genetics , Transcription, Genetic , Trichothiodystrophy Syndromes/genetics
10.
J Urol ; 190(1): 311-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23369722

ABSTRACT

PURPOSE: Bladder tumors in patients younger than 20 years show a low incidence of the genetic and epigenetic aberrations typically found in older patients. One of the most common epigenetic aberrations in human malignancies is DNA hypermethylation. Polycomb group complexes have an important role during lineage choices in embryogenesis and their target genes are 12 times more likely to be methylated than nonpolycomb group target genes. We hypothesized that methylation of polycomb group target genes is an early event in urothelial carcinogenesis and thus might be observed in young patients. MATERIALS AND METHODS: We stratified 167 patients by age into 4 groups, including age less than 20 years in 14, 20 to 40 in 48, 40 to 60 in 47 and greater than 60 in 58. Five previously identified polycomb group target genes (MEIS1, ONECUT2, OTX1, PCDH7 and SOX21) were selected for methylation analysis. Methylation ratios were calculated by using the unmethylated and methylated signal. The outcome represented the fraction of methylated cells within one tumor. Genes with similar methylation ratios in all age groups were considered as potential bladder cancer initiating candidates. RESULTS: Three genes showed higher methylation ratios in tumors from older patients, including ONECUT2, SOX21 and OTX1 (each p <0.001). MEIS1 showed a similar methylation ratio in all groups but the median methylation ratio was low. PCDH7 showed a similar median methylation percent in all age categories, ie 54% at less than 20, 59% at 20 to 40, 59% at 40 to 60 and 67% at greater than 60 years (p = 0.1). CONCLUSIONS: Tumors from young patients showed less methylation for most markers. PCDH7 showed high methylation ratios in all age categories. Therefore, it could have an important role in early urothelial carcinogenesis.


Subject(s)
Cadherins/genetics , Carcinoma, Transitional Cell/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms/genetics , Adolescent , Adult , Age Factors , Aged , Carcinoma, Transitional Cell/diagnosis , Cohort Studies , DNA Methylation/physiology , Female , Genetic Markers , Humans , Male , Middle Aged , Netherlands , Polycomb-Group Proteins/genetics , Prognosis , Promoter Regions, Genetic/genetics , Protocadherins , Risk Assessment , Sensitivity and Specificity , Urinary Bladder Neoplasms/diagnosis , Young Adult
11.
Cell Rep ; 2(4): 781-8, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23084744

ABSTRACT

Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Signal Transduction , Thrombopoietin/genetics , Thrombopoietin/metabolism
12.
PLoS Genet ; 7(12): e1002405, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22174697

ABSTRACT

Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR-deficient Csa(-/-) and Csb(-/-) CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/-) and Xpc(-/-) XP mice, but also occurred in Xpd(XPCS) mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-), Csb(-/-)) or highly sporadic (Xpa(-/-), Xpc(-/-)) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/-) and Csb(-/-) TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR-deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival.


Subject(s)
DNA Repair/genetics , Nerve Degeneration/genetics , Neurons/metabolism , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Aging/genetics , Aging/physiology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cockayne Syndrome/genetics , DNA Repair-Deficiency Disorders , Disease Models, Animal , Humans , Leukoencephalopathies/genetics , Mice , Myelin Sheath/genetics , Myelin Sheath/pathology , Nerve Degeneration/metabolism , Neurons/pathology , Point Mutation , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum Group A Protein/metabolism , Xeroderma Pigmentosum Group D Protein/metabolism
13.
PLoS One ; 6(8): e23411, 2011.
Article in English | MEDLINE | ID: mdl-21858106

ABSTRACT

Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT(1)) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4(+/R)) and 4-fold (homozygous Fibulin-4(R/R)) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-ß signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-ß. Tissue levels of Ang II, a regulator of TGF-ß signaling, were increased. Prenatal treatment with the AT(1) receptor antagonist losartan, which blunts TGF-ß signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4(R/R) mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT(1) receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease.


Subject(s)
Aorta, Thoracic/physiopathology , Aortic Aneurysm/physiopathology , Extracellular Matrix Proteins/deficiency , Vasoconstriction/physiology , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Animals, Newborn , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/prevention & control , Extracellular Matrix Proteins/genetics , Female , Humans , Immunohistochemistry , In Vitro Techniques , Losartan/pharmacology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phenylephrine/pharmacology , Pregnancy , Receptor, Angiotensin, Type 1/physiology , Smad2 Protein/genetics , Smad2 Protein/metabolism , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vasoconstriction/drug effects , Vasoconstriction/genetics , Vasoconstrictor Agents/pharmacology
14.
Circ Cardiovasc Imaging ; 3(5): 567-77, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592247

ABSTRACT

BACKGROUND: We imaged the protease activity of matrix metalloproteinases (MMPs) upregulated during aneurysm formation, using protease-activatable near-infrared fluorescence probes. We tested whether these protease-activatable sensors can directly report the in vivo activity of the key biomarkers in aneurysm, using our genetically modified fibulin-4 mouse models for aneurysm formation. Mice homozygous for the fibulin-4 reduced-expression allele (fibulin-4(R/R)) show dilatation of the ascending aorta and a tortuous, stiffened aorta resulting from disorganized elastic fiber networks. Strikingly, even a moderate reduction in expression of fibulin-4 in the heterozygous fibulin-4(+/R) mice occasionally results in modest aneurysm formation. METHODS AND RESULTS: Aorta transcriptome and protein expression analysis of fibulin-4(+/R) and fibulin-4(R/R) animals identified excessive transforming growth factor-ß signaling as the critical event in the pathogenesis of aneurysm formation. To determine whether a perturbed elastin lamellar structure arose from induction of transforming growth factor-ß-regulated MMPs, we performed gelatin zymography and used a protease-activatable near-infrared fluorescence probe to monitor and quantify MMP upregulation in animals, using various in vivo optical imaging modules and coregistration of the fluorescence signal with CT images of the same animals. Gelatin zymography demonstrated a significant increase in the presence of the active form of MMP-9 in the aortic arch of fibulin-4(R/R) mice. In vivo analysis of MMP upregulation using the near-infrared fluorescence probe and subsequent isosurface concentration mapping from reconstructed tomographic images from fibulin-4(+/R) and fibulin-4(R/R) mice revealed a graded increase in activation of MMPs within the aneurysmal lesions. CONCLUSIONS: We aimed to develop molecular imaging procedures for faster, earlier, and easier recognition of aortic aneurysms. We show that in vivo coregistration of MMP activity by noninvasive tomographic imaging methods allows the detection of increased MMP activity, even before the aneurysm has actually formed.


Subject(s)
Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/diagnosis , Extracellular Matrix Proteins/metabolism , Matrix Metalloproteinases/metabolism , Molecular Imaging , Animals , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/enzymology , Aortic Aneurysm, Thoracic/enzymology , Aortic Aneurysm, Thoracic/genetics , Aortography/methods , Biomarkers/metabolism , Biosensing Techniques , Disease Models, Animal , Disease Progression , Early Diagnosis , Elastin , Enzyme Activation , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Fluorescence , Magnetic Resonance Angiography , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Imaging/methods , Predictive Value of Tests , Signal Transduction , Spectroscopy, Near-Infrared , Tomography, X-Ray Computed , Transforming Growth Factor beta/metabolism , Up-Regulation
15.
J Nucl Med ; 51(6): 973-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20484435

ABSTRACT

UNLABELLED: We determined the renal radiation dose of a series of (111)In-labeled peptides using animal SPECT. Because the animals' health deteriorated, renal toxicity was assessed. METHODS: Wild-type and megalin-deficient mice were imaged repeatedly at 3- to 6-wk intervals to quantify renal retention after injection of 40-50 MBq of (111)In-diethylenetriaminepentaacetic acid-labeled peptides (octreotide, exendin, octreotate, neurotensin, and minigastrin analogs), and the absorbed kidney radiation doses were estimated. Body weight, renal function parameters, and renal histology were determined at 16-20 wk after the first scan and compared with those in naive animals. RESULTS: Because of high renal retention, (111)In-diethylenetriaminepentaacetic acid-exendin-4 scans resulted in a 70-Gy kidney radiation dose in wild-type mice. Megalin-deficient kidneys received 20-40 Gy. The other peptides resulted in much lower renal doses. Kidney function monitoring indicated renal damage in imaged animals. CONCLUSION: Micro-SPECT enables longitudinal studies in 1 animal. However, long-term nephrotoxic effects may be induced after high renal radiation doses, even with (111)In-labeled radiotracers.


Subject(s)
Indium Radioisotopes , Kidney/radiation effects , Peptides , Tomography, Emission-Computed, Single-Photon/adverse effects , Animals , Exenatide , Female , Injections , Kidney/pathology , Kidney/physiopathology , Low Density Lipoprotein Receptor-Related Protein-2/deficiency , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Mice , Organ Specificity , Pentetic Acid/chemistry , Peptides/administration & dosage , Peptides/chemistry , Radiation Dosage , Risk , Time Factors , Tomography, X-Ray Computed , Venoms/chemistry
16.
BMC Urol ; 10: 5, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20187926

ABSTRACT

BACKGROUND: The molecular characteristics and the clinical disease course of bladder cancer (BC) in young patients remain largely unresolved. All patients are monitored according to an intensive surveillance protocol and we aim to gain more insight into the molecular pathways of bladder tumors in young patients that could ultimately contribute to patient stratification, improve patient quality of life and reduce associated costs. We also determined whether a biomarker-based surveillance could be feasible. CASE PRESENTATION: We report a unique case of a 26-year-old Caucasian male with recurrent non-muscle invasive bladder tumors occurring at a high frequency and analyzed multiple tumors (maximal pTaG2) and urine samples of this patient. Analysis included FGFR3 mutation detection, FGFR3 and TP53 immunohistochemistry, mircosatellite analysis of markers on chromosomes 8, 9, 10, 11 and 17 and a genome wide single nucleotide polymorphism-array (SNP). All analyzed tumors contained a mutation in FGFR3 and were associated with FGFR3 overexpression. None of the tumors showed overexpression of TP53. We found a deletion on chromosome 9 in the primary tumor and this was confirmed by the SNP-array that showed regions of loss on chromosome 9. Detection of all recurrences was possible by urinary FGFR3 mutation analysis. CONCLUSIONS: Our findings would suggest that the BC disease course is determined by not only a patient's age, but also by the molecular characteristics of a tumor. This young patient contained typical genetic changes found in tumors of older patients and implies a clinical disease course comparable to older patients. We demonstrate that FGFR3 mutation analysis on voided urine is a simple non-invasive method and could serve as a feasible follow-up approach for this young patient presenting with an FGFR3 mutant tumor.


Subject(s)
Genetic Predisposition to Disease/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Adult , Humans , Male
17.
Wound Repair Regen ; 17(6): 840-52, 2009.
Article in English | MEDLINE | ID: mdl-19903305

ABSTRACT

Heparan sulfate glycosaminoglycans (HS-GAGs) are not only the structural elements of tissue architecture but also regulate the bioavailability and transduction pathways of heparan sulfate-bound polypeptides released by cells or the extracellular matrix. Heparan sulfate-bound polypeptides include inflammatory mediators, chemokines, angiogenic factors, morphogens, and growth-promoting factors that induce cell migration, proliferation, and differentiation in wound healing. OTR4120, a polymer engineered to mimic the properties of HS-GAGs, is used to replace the natural HS-GAGs that are degraded during wound repair, and enhance the tissue regeneration by preserving the cellular microenvironment and the endogenous signals needed for tissue regeneration. We previously demonstrated that OTR4120 treatment had a long-term effect on increasing breaking strength and vasodilation in healing rat full-thickness excisional wounds. The present study investigates the underlying mechanisms of the effects of OTR4120 treatment in improving the quality of cutaneous wound repair. We found that OTR4120 treatment stimulated inflammation resolution and increased neovascularization. OTR4120 treatment also promoted epidermal migration and proliferation during reepithelialization. Moreover, the granulation tissue formation and collagen maturation were improved in OTR4120-treated wounds. Three months after wounding, the effects of OTR4120 treatment on vascularization and inflammation resolution were normalized, except for an improved neodermis. We conclude that OTR4120 is a potential matrix therapeutic agent that ensures the quality of normal cutaneous wound repair and may restore impaired wound healing characterized by deficient angiogenesis and prolonged inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Collagen/drug effects , Glycosaminoglycans/pharmacology , Neovascularization, Physiologic/drug effects , Skin Ulcer/drug therapy , Wound Healing/drug effects , Animals , Disease Models, Animal , Inflammation/drug therapy , Inflammation/physiopathology , Male , Neovascularization, Physiologic/physiology , Rats , Skin Ulcer/physiopathology , Vascular Endothelial Growth Factor A/drug effects , Wound Healing/physiology
18.
J Sex Med ; 6(7): 1908-13, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19453915

ABSTRACT

INTRODUCTION: External beam radiotherapy for prostate cancer leads to erectile dysfunction in 36%-43% of patients. The underlying mechanism is largely unknown, although some clinical studies suggest that the arterial supply to the corpora cavernosa is responsible. Two animal experimental studies reported on the effects of a single fraction of prostate irradiation on the penile structures. However, irradiation in multiple fractions is more representative of the actual clinical treatment. AIM: The present prospective, controlled study was initiated to investigate the effect of fractionated prostate irradiation on the arteries of the corpora cavernosa. MAIN OUTCOME MEASURES: Histological evaluation of the penile tissue in comparison with control rats at 2, 4, and 9 weeks after irradiation. METHODS: The prostate of twelve rats was treated with external beam radiation in 5 daily fractions of 7.4 gray. Three control rats were treated with sham irradiation. Prostatic and penile tissue was evaluated for general histology (hematoxylin-eosin). The penile tissue was further evaluated after combined staining for collagen (resorcin fuchsin) and alpha-smooth muscle actin (SMA) (Biogenex). RESULTS: The prostate showed adequate irradiation with fibrosis occurring at 9 weeks after irradiation. The corpora cavernosa showed arteries that had developed loss of smooth muscle cells expressing SMA, thickening of the intima, and occlusions. All the control rats maintained normal anatomy. CONCLUSION: This is the first animal experimental study that demonstrates changes in the arteries of the corpora cavernosa after fractionated irradiation to the prostatic area. The preliminary data suggests that erectile dysfunction after radiotherapy might be caused by radiation damage to the arterial supply of the corpora cavernosa.


Subject(s)
Arteries/radiation effects , Endothelium, Vascular/radiation effects , Fibrosis/etiology , Muscle, Smooth/radiation effects , Penis/blood supply , Prostate/blood supply , Animals , Dose Fractionation, Radiation , Male , Penis/radiation effects , Pilot Projects , Prospective Studies , Prostate/radiation effects , Rats , Rats, Sprague-Dawley
19.
J Pathol ; 218(1): 104-12, 2009 May.
Article in English | MEDLINE | ID: mdl-19156776

ABSTRACT

Non-muscle invasive bladder cancers (NMI-BCs) represent 75% of bladder cancers upon presentation. After removal of the primary tumour by transurethral resection, multiple recurrences continue to develop in 70% of patients. Consequently, prolonged and costly surveillance by cystoscopy is required. Mutations in the FGFR3 oncogene are common in NMI-BCs and are associated with a lower chance of progression to muscle-invasive disease. Here we analysed the consistency of FGFR3 mutations in primary and recurrent tumours. This knowledge is of crucial importance if FGFR3 mutation analysis on urinary cells is to be used as an alternative for cystoscopical surveillance. To this end, we monitored the disease process and FGFR3 mutation status of primary and recurrent tumours in 118 patients with NMI-BC. During median follow-up of 8.8 years, these patients underwent 2133 cystoscopies and 80 patients developed 414 recurrences. FGFR3 mutations were equally prevalent in primary and recurrent tumours (63%). Patients can have different types of FGFR3 mutations in different tumours. Recurrence risk was not significantly different for patients with a mutant or wild-type primary tumour. Recurrence rates varied widely between patients but were constant for a patient and were unrelated to FGFR3 status. In the mutant patient group, in contrast to the wild-type group, recurrences continued to develop after 10 years. In 81% of the recurrences of patients with a mutant primary tumour, a mutation was found. Moreover, recurrences in this patient group were of lower stage and grade than those of patients with a wild-type primary tumour (p < 0.001). These results suggest that surveillance by FGFR3 mutation analysis on voided urine in combination with a reduced cystoscopy frequency of patients presenting with an FGFR3 mutant tumour is worth investigating.


Subject(s)
DNA Mutational Analysis , Neoplasm Recurrence, Local/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Chi-Square Distribution , Clone Cells , Cystoscopy , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology
20.
Blood ; 112(5): 1844-52, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18544677

ABSTRACT

Regressions of metastatic solid tumors after allogeneic human leukocyte antigen (HLA)-matched stem cell transplantation (SCT) are often associated with detrimental graft-versus-host disease (GVHD). The graft-versus-host reaction of the HLA-matched donor is directed mainly against the multiple mismatched minor histocompatibility antigens (mHags) of the patient. mHags are strong HLA-restricted alloantigens with differential tissue distribution. Ubiquitously expressed mHags are the prime in situ targets of GVHD. The mHag HA-1 is hematopoiesis restricted, but displays additionally an aberrant expression on solid tumors. Thus, HA-1 might be an excellent target to boost the anti-solid tumor effect of allogeneic SCT without inducing severe GVHD. Here, we show that cytotoxic T lymphocytes (CTLs) solely targeting the human mHag HA-1 are capable of eradicating 3-dimensional human solid tumors in a highly mHag-specific manner in vitro, accompanied by interferon-gamma release. In vivo, HA-1-specific CTLs distribute systemically and prevent human breast cancer metastases in immunodeficient mice. Moreover, HA-1-specific CTLs infiltrate and inhibit the progression of fully established metastases. Our study provides the first proof for the efficacy of a clinically applicable concept to exploit single mismatched mHags with hematopoiesis- and solid tumor-restricted expression for boosting the anti-solid tumor effect of allogeneic SCT.


Subject(s)
Minor Histocompatibility Antigens/metabolism , Neoplasms/immunology , Neoplasms/therapy , Oligopeptides/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Line, Tumor , Female , Graft vs Tumor Effect , Humans , Immunotherapy, Adoptive , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/pathology , Stem Cell Transplantation , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...