Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38767992

ABSTRACT

PURPOSE: The aim of this study was to characterize W' recovery kinetics in response to a partial W' depletion. We hypothesized that W' recovery following partial depletion would be better described by a biexponential than by a monoexponential model. METHODS: Nine healthy men performed a ramp incremental exercise test, three to five constant load trials to determine critical power and W', and ten experimental trials to quantify W' depletion. Each experimental trial consisted of two constant load work bouts (WB1 + WB2) interspersed by a recovery interval. WB1 was designed to evoke a 25% or 75% W' depletion (DEP 25% + DEP 75% ). Subsequently, participants recovered for 30, 60, 120, 300 or 600 s, and then performed WB2 to exhaustion in order to calculate the observed W' recovery (W' OBS ). W' OBS data were fitted using monoexponential and biexponential models, both with a variable and a fixed model amplitude. Root mean square error (RMSE) and Akaike information criterion (AIC c ) were calculated to evaluate the models' goodness-of-fit. RESULTS: The biexponential model fits were associated with overall lower RMSE values (0.4-5.0%) compared to the monoexponential models (2.9-8.0%). However, ΔAIC c resulted in negative values (-15.5 and -23.3) for the model fits where the amplitude was free, thereby favoring the use of a monoexponential model for both depletion conditions. For the model fits where the amplitude was fixed at 100%, ΔAIC c was negative for DEP 25% (-15.0), but positive for DEP 75% (11.2). W' OBS values were strongly correlated between both depletion conditions ( r = 0.92), and positively associated with V̇O 2peak , CP and GET ( r = 0.67-0.77). CONCLUSIONS: The present study results did not provide evidence in favor of a biexponential modeling technique to characterize W' recovery following partial depletion. Moreover, we demonstrated that fixed t values were insufficient to model W' recovery across different depletion levels, and that W' recovery was positively associated with aerobic fitness. These findings underline the importance of employing variable and individualized t values in future predictive W' models.

2.
Int J Sports Physiol Perform ; 18(3): 284-292, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36716743

ABSTRACT

PURPOSE: To examine the differences in training load (TL) metrics when quantifying training sessions differing in intensity and duration. The relationship between the TL metrics and the acute performance decrement measured immediately after the sessions was also assessed. METHODS: Eleven male recreational cyclists performed 4 training sessions in a random order, immediately followed by a 3-km time trial (TT). Before this period, participants performed the time TT in order to obtain a baseline performance. The difference in the average power output for the TTs following the training sessions was then expressed relative to the best baseline performance. The training sessions were quantified using 7 different TL metrics, 4 using heart rate as input, 2 using power output, and 1 using the rating of perceived exertion. RESULTS: The load of the sessions was estimated differently depending on the TL metrics used. Also, within the metrics using the same input (heart rate and power), differences were found. TL using the rating of perceived exertion was the only metric showing a response that was consistent with the acute performance decrements found for the different training sessions. The Training Stress Score and the individualized training impulse demonstrated similar patterns but overexpressed the intensity of the training sessions. The total work done resulted in an overrepresentation of the duration of training. CONCLUSION: TL metrics provide dissimilar results as to which training sessions have higher loads. The load based on TL using the rating of perceived exertion was the only one in line with the acute performance decrements found in this study.


Subject(s)
Physical Conditioning, Human , Humans , Male , Physical Conditioning, Human/methods , Physical Exertion/physiology , Heart Rate/physiology
3.
Int J Sports Physiol Perform ; 16(9): 1261-1269, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33691278

ABSTRACT

PURPOSE: Numerous methods exist to quantify training load (TL). However, the relationship with performance is not fully understood. Therefore the purpose of this study was to investigate the influence of the existing TL quantification methods on performance modeling and the outcome parameters of the fitness-fatigue model. METHODS: During a period of 8 weeks, 9 subjects performed 3 interval training sessions per week. Performance was monitored weekly by means of a 3-km time trial on a cycle ergometer. After this training period, subjects stopped training for 3 weeks but still performed a weekly time trial. For all training sessions, Banister training impulse (TRIMP), Lucia TRIMP, Edwards TRIMP, training stress score, and session rating of perceived exertion were calculated. The fitness-fatigue model was fitted for all subjects and for all TL methods. RESULTS: The error in relating TL to performance was similar for all methods (Banister TRIMP: 618 [422], Lucia TRIMP: 625 [436], Edwards TRIMP: 643 [465], training stress score: 639 [448], session rating of perceived exertion: 558 [395], and kilojoules: 596 [505]). However, the TL methods evolved differently over time, which was reflected in the differences between the methods in the calculation of the day before performance on which training has the biggest positive influence (range of 19.6 d). CONCLUSIONS: The authors concluded that TL methods cannot be used interchangeably because they evolve differently.


Subject(s)
Physical Conditioning, Human , Exercise , Fatigue , Heart Rate , Humans , Physical Conditioning, Human/methods , Physical Exertion
4.
J Strength Cond Res ; 35(12): 3500-3505, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-31498226

ABSTRACT

ABSTRACT: Vermeire, KM, Vandewiele, G, Caen, K, Lievens, M, Bourgois, JG, and Boone, J. Training progression in recreational cyclists: no linear dose-response relationship with training load. J Strength Cond Res 35(12): 3500-3505, 2021-The purpose of the study was to assess the relationship between training load (TL) and performance improvement in a homogeneous group of recreational cyclists, training with a self-oriented training plan. Training data from 11 recreational cyclists were collected over a 12-week period. Before and after the training period, subjects underwent a laboratory incremental exercise test with blood lactate measurements to determine the power output associated with the aerobic threshold (PAT) and the anaerobic threshold (PANT), and the maximal power output (PMAX) was also determined. Mean weekly TL (calculated using the training impulse (TRIMP) of Banister, Edwards TRIMP, Lucia TRIMP and the individualized TRIMP) were correlated to the progression in fitness parameters using Pearson Correlation. Training intensity distribution (TID) was also determined (% in zone 1 as ANT). No significant correlations between mean weekly TRIMP values and the improvement on PMAX (r = -0.22 to 0.08), PANT (r = -0.56 to -0.31) and PAT (r = -0.08 to 0.41) were found. The TID was significant in a multiple regression with PANT as dependent variable (y = 0.0088 + 0.1094 × Z1 - 0.2704 × Z2 + 1.0416 × Z3; p = 0.02; R2 = 0.62). In conclusion, this study shows that the commonly used TRIMP methods to quantify TL do not show a linear dose-response relationship with performance improvement in recreational cyclists. Furthermore, the study shows that TID might be a key factor to establish a relationship with performance improvement.


Subject(s)
Anaerobic Threshold , Physical Exertion , Exercise , Exercise Test , Heart Rate , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...