Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1030: 237-47, 2013.
Article in English | MEDLINE | ID: mdl-23821273

ABSTRACT

The nonstructural protein 5 (NS5) of dengue virus (DENV) plays a central role in the virus replication. It functions as a methyltransferase and an RNA-dependent RNA polymerase. As such, it is a promising target for antiviral drug development. To develop a high-throughput biochemical assay for screening compound libraries, we expressed and purified the polymerase domain of the dengue NS5 protein in bacterial cells. The polymerase activity is measured using a scintillation proximity assay. This homogeneous and high--throughput assay enables screening of compound libraries for identifying polymerase inhibitors against DENV. In this chapter we describe the methods to express and purify the dengue NS5 polymerase from E. coli and a validated high-throughput enzymatic assay for screening inhibitors of NS5 polymerase.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/physiology , Gene Expression , High-Throughput Screening Assays , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Plasmids/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Transformation, Bacterial , Viral Nonstructural Proteins/isolation & purification
2.
Antimicrob Agents Chemother ; 54(5): 1878-87, 2010 May.
Article in English | MEDLINE | ID: mdl-20176898

ABSTRACT

TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC(50)s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to approximately 2,000-fold for those with the D168V or D168I mutation, compared to the EC(50) for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC(50)s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC(50)s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.


Subject(s)
Hepacivirus/drug effects , Hepatitis C/drug therapy , Heterocyclic Compounds, 3-Ring/pharmacology , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Cell Line , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Synergism , Genotype , Hepacivirus/enzymology , Hepacivirus/genetics , Hepatitis C/virology , Humans , In Vitro Techniques , Interferon-alpha/pharmacology , Mutagenesis , Simeprevir , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
3.
J Virol ; 84(6): 2923-34, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20071590

ABSTRACT

The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is an unusually attractive target for drug discovery since it contains five distinct drugable sites. The success of novel antiviral therapies will require nonnucleoside inhibitors to be active in at least patients infected with HCV of subtypes 1a and 1b. Therefore, the genotypic assessment of these agents against clinical isolates derived from genotype 1-infected patients is an important prerequisite for the selection of suitable candidates for clinical development. Here we report the 1a/1b subtype profiling of polymerase inhibitors that bind at each of the four known nonnucleoside binding sites. We show that inhibition of all of the clinical isolates tested is maintained, except for inhibitors that bind at the palm-1 binding site. Subtype coverage varies across chemotypes within this class of inhibitors, and inhibition of genotype 1a improves when hydrophobic contact with the polymerase is increased. We investigated if the polymorphism of the palm-1 binding site is the sole cause of the reduced susceptibility of subtype 1a to inhibition by 1,5-benzodiazepines by using reverse genetics, X-ray crystallography, and surface plasmon resonance studies. We showed Y415F to be a key determinant in conferring resistance on subtype 1a, with this effect being mediated through an inhibitor- and enzyme-bound water molecule. Binding studies revealed that the mechanism of subtype 1a resistance is faster dissociation of the inhibitor from the enzyme.


Subject(s)
Antiviral Agents/therapeutic use , Hepacivirus/enzymology , Hepatitis C/drug therapy , Isoenzymes/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Binding Sites , Crystallography, X-Ray , Drug Discovery , Hepacivirus/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Replicon/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
4.
Bioorg Med Chem Lett ; 19(9): 2492-6, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19342234

ABSTRACT

Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC(50)=400nM and 270nM, respectively) and selective (CC(50)>20muM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.


Subject(s)
Antiviral Agents/chemical synthesis , Benzodiazepines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Acrylates/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Drug Design , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Structure-Activity Relationship
5.
Antimicrob Agents Chemother ; 53(4): 1377-85, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19171797

ABSTRACT

The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC(50)) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC(99) value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Drug Therapy, Combination , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Interferon-alpha/administration & dosage , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Simeprevir , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Tissue Distribution , Virus Replication/drug effects
6.
Bioorg Med Chem Lett ; 17(7): 1843-9, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17289388

ABSTRACT

Screening of a focused library of TGF beta kinase inhibitors in the cellular HCV replicon model with luciferase read out yielded a number of low micromolar HCV inhibitors. Medicinal chemistry driven optimization resulted in the discovery of 4-[2-(5-bromo-2-fluoro-phenyl)pteridin-4-ylamino]-N-[3-(2- oxopyrrolidin-1-yl)propyl]nicotinamide 36 with a replicon EC(50) of 64nM, associated with a selective kinase inhibitory profile for human JNK kinases 2 and 3 as well as VEGFR-1, 2, and 3 kinases. Moreover, 36 showed an advantageous PK profile in mice. Experiments performed using different replicon constructs suggest that this series of kinase inhibitors might mediate their effect through the HCV non-structural protein 5A (NS5A).


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/metabolism , MAP Kinase Kinase 4/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Viral Nonstructural Proteins/pharmacology , Animals , Area Under Curve , Cell Line , Drug Design , Evaluation Studies as Topic , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Chemical , Molecular Conformation , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...