Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 107(7): 1957-1972, 2018 07.
Article in English | MEDLINE | ID: mdl-29524447

ABSTRACT

The objective was to compare, with the same data set, the predictive performance of 3 in vitro assays of hepatic clearance (CL), namely, micropatterned cocultures (also referring to HepatoPac®) and suspension as well as monolayer hepatocytes to define which assay is the most accurate. Furthermore, existing in vitro-to-in vivo extrapolation (IVIVE) methods were challenged to verify which method is the most predictive (i.e., direct scaling method without binding correction, conventional method based either on the unbound fraction in plasma (fup) according to the free-drug hypothesis, or based on an fup value adjusted for the albumin [ALB]-facilitated hepatic uptake phenomenon). Accordingly, the role of ALB binding was specifically challenged, and consequently, the ALB production was monitored in parallel to the metabolic stability. The ALB concentration data were used to compare the in vitro assays and to adjust the value of fup of each drug to mimic the ALB-facilitated hepatic uptake phenomenon. The results confirmed that the direct and conventional IVIVE methods generally overpredicted and underpredicted the CL in vivo in humans, respectively. However, the underprediction of the conventional IVIVE method based on fup was significantly reduced from data generated with the HepatoPac® system compared with the 2 other in vitro assays, which is possibly because that system is producing ALB at a rate much closer to the in vivo condition in liver. Hence, these observations suggest that the presence of more ALB molecules per hepatocyte in that HepatoPac® system may have facilitated the hepatic uptake of several bound drugs because their intrinsic CL was increased instead of being decreased by the ALB binding effect. Accordingly, the IVIVE method based on the fup value adjusted for the ALB-facilitated uptake phenomenon gave the lowest prediction bias from the statistical analyses. This study indicated that the HepatoPac® system combined with the adjusted value of fup was the most reliable IVIVE method and revealed the importance of quantifying the in vitro-to-in vivo variation of ALB concentration to improve the CL predictions, which would help any future physiologically based pharmacokinetics modeling exercise.


Subject(s)
Coculture Techniques/methods , Hepatocytes/metabolism , Metabolic Clearance Rate , Pharmaceutical Preparations/metabolism , Serum Albumin/metabolism , Algorithms , Biological Transport , Cell Line , Humans , Kinetics , Models, Biological , Protein Binding
2.
ACS Infect Dis ; 3(1): 5-17, 2017 01 13.
Article in English | MEDLINE | ID: mdl-27726334

ABSTRACT

VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD+. This compound binds at the NAD+ site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 µM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target.


Subject(s)
Antitubercular Agents/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Mycobacterium/drug effects , Sulfones/pharmacology , Tuberculosis/drug therapy , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Discovery , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Genome, Bacterial , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Mutation , Tuberculosis/microbiology
3.
Drug Metab Dispos ; 44(1): 50-60, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467767

ABSTRACT

Prediction of drug-drug interactions due to cytochrome P450 isoform 3A4 (CYP3A4) overexpression is important because this CYP isoform is involved in the metabolism of about 30% of clinically used drugs from almost all therapeutic categories. Therefore, it is mandatory to attempt to predict the potential of a new compound to induce CYP3A4. Among several in vitro-in vivo extrapolation methods recently proposed in the literature, an approach using a scaling factor, called a d factor, for a given hepatocyte batch to provide extrapolation between in vitro induction data and clinical outcome has been adopted by leading health authorities. We challenged the relevance of the calibration factor determined using a set of 15 well-known clinical CYP3A4 inducers or the potent CYP3A4 inducer rifampicin only. These investigations were conducted using six batches of human hepatocytes and an established HepaRG cell line. Our findings show that use of a calibration factor is preferable for clinical predictions, as shown previously by other investigators. Moreover, the present results also suggest that the accuracy of prediction through calculation of this factor is sufficient when rifampicin is considered alone, and the use of a larger set of fully characterized CYP3A4 clinical inducers is not required. For the established HepaRG cell line, the findings obtained in three experiments using a single batch of cells show a good prediction accuracy with or without the d factor. Additional investigations with different batches of HepaRG cell lines are needed to confirm these results.


Subject(s)
Cryopreservation , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Drug Interactions , Hepatocytes/drug effects , Hepatocytes/enzymology , Adult , Aged , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inducers/toxicity , Dose-Response Relationship, Drug , Enzyme Induction , Female , Humans , Male , Middle Aged , Models, Biological , RNA, Messenger/biosynthesis , Rifampin/pharmacology
4.
J Antimicrob Chemother ; 70(11): 3070-3, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26245639

ABSTRACT

OBJECTIVES: The increasing number of clinical strains resistant to one or more of the front-line TB drugs complicates the management of this disease. To develop next-generation benzimidazole-based FtsZ inhibitors with improved efficacy, we employed iterative optimization strategies based on whole bacteria potency, bactericidal activity, plasma and metabolic stability and in vivo efficacy studies. METHODS: Candidate benzimidazoles were evaluated for potency against Mycobacterium tuberculosis H37Rv and select clinical strains, toxicity against Vero cells and compound stability in plasma and liver microsomes. The efficacy of lead compounds was assessed in the acute murine M. tuberculosis infection model via intraperitoneal and oral routes. RESULTS: MICs of SB-P17G-A33, SB-P17G-A38 and SB-P17G-A42 for M. tuberculosis H37Rv and select clinical strains were 0.18-0.39 mg/L. SB-P17G-A38 and SB-P17G-A42 delivered at 50 mg/kg twice daily intraperitoneally or orally demonstrated efficacy in reducing the bacterial load by 5.7-6.3 log10 cfu in the lungs and 3.9-5.0 log10 cfu in the spleen. SB-P17G-A33 delivered at 50 mg/kg twice daily intraperitoneally or orally also reduced the bacterial load by 1.7-2.1 log10 cfu in the lungs and 2.5-3.4 log10 cfu in the spleen. CONCLUSIONS: Next-generation benzimidazoles with excellent potency and efficacy against M. tuberculosis have been developed. This is the first report on benzimidazole-based FtsZ inhibitors showing an equivalent level of efficacy to isoniazid in an acute murine M. tuberculosis infection model.


Subject(s)
Antitubercular Agents/administration & dosage , Benzimidazoles/administration & dosage , Isoniazid/administration & dosage , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Administration, Oral , Animals , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Benzimidazoles/pharmacology , Cell Division/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Cytoskeletal Proteins/antagonists & inhibitors , Disease Models, Animal , Drug Stability , Inactivation, Metabolic , Injections, Intraperitoneal , Isoniazid/pharmacology , Mice , Microbial Sensitivity Tests , Treatment Outcome , Vero Cells
5.
Drug Metab Lett ; 8(1): 12-8, 2014.
Article in English | MEDLINE | ID: mdl-25313020

ABSTRACT

A major challenge for the evaluation of cytokine-induced down regulation of CYP gene expression in primary cultured hepatocytes is the spontaneous decrease in expression of the genes with culture duration. Based on our recent discovery that hepatocytes cultured for 7 days in a novel medium, Li's Differentiation Maintenance Medium (LDMM), would retain gene expression for markers of differentiation and most CYP isoforms at levels similar to those of the first day of culture, we examined the effects of the prototypical pro-inflammatory cytokine IL-6 in the "LDMM-stabilized (LS)" human hepatocyte model. The LS-human hepatocyte cultures were found to be responsive to IL-6 induction of the inflammatory gene marker, C-reactive protein (CRP), suggesting the expression of IL-6 receptors and the subsequent signaling pathways. Results from two independent laboratories with human hepatocytes from three donors demonstrated dose-dependent down regulation of the gene expression of several CYPs, i.e. 1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4. The results suggest that the LS-human hepatocytes may represent a physiologically relevant experimental model for mechanistic investigation of the down-regulatory effects of inflammatory cytokines.


Subject(s)
Cell Differentiation/drug effects , Culture Media/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/drug effects , Inflammation Mediators/pharmacology , Interleukin-6/pharmacology , Adult , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , Down-Regulation , Female , Gene Expression Regulation, Enzymologic/drug effects , Hepatocytes/enzymology , Humans , Isoenzymes , Male , Middle Aged , Time Factors , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...