Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Digit Health ; 6(4): e272-e280, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443309

ABSTRACT

BACKGROUND: Management of insulin administration for intake of carbohydrates and physical activity can be burdensome for people with type 1 diabetes on hybrid closed-loop systems. Bihormonal fully closed-loop (FCL) systems could help reduce this burden. In this trial, we assessed the long-term performance and safety of a bihormonal FCL system. METHODS: The FCL system (Inreda AP; Inreda Diabetic, Goor, Netherlands) that uses two hormones (insulin and glucagon) was assessed in a 1 year, multicentre, prospective, single-arm intervention trial in adults with type 1 diabetes. Participants were recruited in eight outpatient clinics in the Netherlands. We included adults with type 1 diabetes aged 18-75 years who had been using flash glucose monitoring or continuous glucose monitors for at least 3 months. Study visits were integrated into standard care, usually every three months, to evaluate glycaemic control, adverse events, and person-reported outcomes. The primary endpoint was time in range (TIR; glucose concentration 3·9-10·0 mmol/L) after 1 year. The study is registered in the Dutch Trial Register, NL9578. FINDINGS: Between June 1, 2021, and March 2, 2022, we screened 90 individuals and enrolled 82 participants; 78 were included in the analyses. 79 started the intervention and 71 were included in the 12 month analysis. Mean age was 47.7 (SD 12·4) years and 38 (49%) were female participants. The mean preintervention TIR of participants was 55·5% (SD 17·2). After 1 year of FCL treatment, mean TIR was 80·3% (SD 5·4) and median time below range was 1·36% (IQR 0·80-2·11). Questionnaire scores improved on Problem Areas in Diabetes (PAID) from 30·0 (IQR 18·8-41·3) preintervention to 10·0 (IQR 3·8-21·3; p<0·0001) at 12 months and on World Health Organization-Five Well-Being Index (WHO-5) from 60·0 (IQR 44·0-72·0) preintervention to 76·0 (IQR 60·0-80·0; p<0·0001) at 12 months. Five serious adverse events were reported (one cerebellar stroke, two severe hypoglycaemic, and two hyperglycaemic events). INTERPRETATION: Real-world data obtained in this trial demonstrate that use of the bihormonal FCL system was associated with good glycaemic control in patients who completed 1 year of treatment, and could help relieve these individuals with type 1 diabetes from making treatment decisions and the burden of carbohydrate counting. FUNDING: Inreda Diabetic.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adult , Female , Humans , Male , Middle Aged , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Insulin/therapeutic use , Insulin Infusion Systems , Netherlands , Prospective Studies
2.
Fam Cancer ; 20(4): 349-354, 2021 10.
Article in English | MEDLINE | ID: mdl-33811277

ABSTRACT

We describe a case of a boy with neurodevelopmental delay and a diffuse large B-cell lymphoma (DLBCL) in whom we discovered a germline de novo 2p16.3 deletion including MSH6 and part of the FBXO11 gene. A causative role for MSH6 in cancer development was excluded based on tumor characteristics. The constitutional FBXO11 deletion explains the neurodevelopmental delay in the patient. The FBXO11 protein is involved in BCL-6 ubiquitination and BCL-6 is required for the germinal center reaction resulting in B cell differentiation. Somatic loss of function alterations of FBXO11 result in BCL-6 overexpression which is a known driver in DLBCL. We therefore consider that a causative relationship between the germline FBXO11 deletion and the development of DLBCL in this boy is conceivable.


Subject(s)
F-Box Proteins , Lymphoma, Large B-Cell, Diffuse , F-Box Proteins/genetics , Germinal Center/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Protein-Arginine N-Methyltransferases/metabolism
3.
Aliment Pharmacol Ther ; 38(6): 573-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23879699

ABSTRACT

BACKGROUND: Delayed gastric emptying limits the administration of enteral nutrition, leading to malnutrition, which is associated with higher mortality and morbidity. Currently available prokinetics have limitations in terms of sustained efficacy and side effects. AIM: To summarise the mechanisms of action and to discuss the possible utility of gastrointestinal hormones to prevent or treat delayed gastric emptying in critically ill patients. METHODS: We searched PubMed for articles discussing 'delayed gastric emptying', 'enteral nutrition', 'treatment', 'gastrointestinal hormones', 'prokinetic', 'agonist', 'antagonist' and 'critically ill patients'. RESULTS: Motilin and ghrelin receptor agonists initiate the migrating motor complex in the stomach, which accelerates gastric emptying. Cholecystokinin, glucagon-like peptide-1 and peptide YY have an inhibiting effect on gastric emptying; therefore, antagonising these gastrointestinal hormones may have therapeutic potential. Other gastrointestinal hormones appear less promising. CONCLUSIONS: Manipulation of endogenous secretion, physiological replacement and administration of gastrointestinal hormones in pharmacological doses is likely to have therapeutic potential in the treatment of delayed gastric emptying. Future challenges in this field will include the search for candidates with improved selectivity and favourable kinetic properties.


Subject(s)
Critical Illness , Gastric Emptying/drug effects , Gastrointestinal Agents/therapeutic use , Gastrointestinal Hormones/physiology , Enteral Nutrition/methods , Gastroparesis/drug therapy , Humans , Malnutrition/prevention & control , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...