Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 99(2-1): 023001, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934326

ABSTRACT

We investigate the interplay between prestress and mechanical properties in random elastic networks. To do this in a controlled fashion, we introduce an algorithm for creating random free-standing frames that support exactly one state of self-stress. By multiplying all the bond tensions in this state of self-stress by the same number-which with the appropriate normalization corresponds to the physical prestress inside the frame-we systematically evaluate the linear mechanical response of the frame as a function of prestress. After proving that the mechanical moduli of affinely deforming frames are rigorously independent of prestress, we turn to nonaffinely deforming frames. In such frames, prestress has a profound effect on linear response: not only can it change the values of the linear modulus-an effect we demonstrate to be related to a suppressive effect of prestress on nonaffinity-but prestresses also generically trigger a bistable mechanical response. Thus, prestress can be leveraged to both augment the mechanical response of network architectures on the fly, and to actuate finite deformations. These control modalities may be of use in the design of both novel responsive materials and soft actuators.

2.
Phys Rev E ; 96(5-1): 053003, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347645

ABSTRACT

Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ^{★}, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...