Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(25): e202404885, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38622059

ABSTRACT

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.


Subject(s)
Cellular Senescence , Indocyanine Green , Indocyanine Green/chemistry , Cellular Senescence/drug effects , Humans , Animals , Optical Imaging , Mice , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Photoacoustic Techniques/methods
2.
Blood Adv ; 4(18): 4483-4493, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32941648

ABSTRACT

Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo-generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG-treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG-treated CD19-CAR-T cells in patients with B-cell malignancies.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Animals , CD8-Positive T-Lymphocytes , Glutarates , Humans , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics
3.
J Bone Miner Res ; 32(12): 2476-2488, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28771888

ABSTRACT

Glucocorticoids are widely used as therapeutic agents to treat immune-mediated diseases in humans because of their anti-inflammatory and immunosuppressive effects. However, glucocorticoids have various adverse effects, in particular rapid and pronounced bone loss associated with fractures in glucocorticoid-induced osteoporosis, a common form of secondary osteoporosis. In zebrafish, which are increasingly used to study processes of bone regeneration and disease, glucocorticoids show detrimental effects on bone tissue; however, the underlying cellular mechanisms are incompletely understood. Here, we show that treatment with the glucocorticoid prednisolone impacts on the number, activity and differentiation of osteoblasts, osteoclasts, and immune cells during ontogenetic growth, homeostasis, and regeneration of zebrafish bone. Macrophage numbers are reduced in both larval and adult tissues, correlating with decreased generation of myelomonocytes and enhanced apoptosis of these cells. In contrast, osteoblasts fail to proliferate, show decreased activity, and undergo incomplete differentiation. In addition, prednisolone treatment mitigates the number and recruitment of osteoclasts to sites of bone regeneration in adult fish. In combination, these effects delay bone growth and impair bone regeneration. Our study demonstrates the many-faceted effects of glucocorticoids in non-mammalian vertebrates and helps to further establish the zebrafish as a model to study glucocorticoid-induced osteoporosis. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Development/drug effects , Bone Regeneration/drug effects , Immunosuppressive Agents/pharmacology , Prednisolone/pharmacology , Zebrafish/physiology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Homeostasis/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects
4.
J Pathol ; 242(3): 322-333, 2017 07.
Article in English | MEDLINE | ID: mdl-28418093

ABSTRACT

Osteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy. Expression of HIF-1α mRNA and protein increased during osteoclast differentiation from CD14+ monocytic precursors, additionally inducing expression of the HIF-regulated glycolytic enzymes. However, HIF-1α siRNA only moderately affected osteoclast differentiation, accelerating fusion of precursor cells. HIF induction by inhibition of the regulatory prolyl-4-hydroxylase (PHD) enzymes reduced osteoclastogenesis, but was confirmed to enhance bone resorption by mature osteoclasts. Phd2+/- murine osteoclasts also exhibited enhanced bone resorption, associated with increased expression of resorption-associated Acp5, in comparison with wild-type cells from littermate controls. Phd3-/- bone marrow precursors displayed accelerated early fusion, mirroring results with HIF-1α siRNA. In vivo, Phd2+/- and Phd3-/- mice exhibited reduced trabecular bone mass, associated with reduced mineralization by Phd2+/- osteoblasts. These data indicate that HIF predominantly functions as a regulator of osteoclast-mediated bone resorption, with little effect on osteoclast differentiation. Inhibition of HIF might therefore represent an alternative strategy to treat diseases characterized by pathological levels of osteolysis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Resorption/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Osteoclasts/physiology , Osteogenesis/physiology , Prolyl Hydroxylases/physiology , Animals , Cancellous Bone/physiology , Cell Adhesion/physiology , Cell Differentiation/physiology , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/deficiency , Leukocytes, Mononuclear/pathology , Mice , RNA, Messenger/metabolism
5.
Mol Ther ; 24(10): 1745-1759, 2016 10.
Article in English | MEDLINE | ID: mdl-27480772

ABSTRACT

Therapeutic angiogenesis is a major goal of regenerative medicine, but no clinically approved small molecule exists that enhances new blood vessel formation. Here we show, using a phenotype-driven high-content imaging screen of an annotated chemical library of 1,280 bioactive small molecules, that the retinoid agonist Tazarotene, enhances in vitro angiogenesis, promoting branching morphogenesis, and tubule remodeling. The proangiogenic phenotype is mediated by retinoic acid receptor but not retinoic X receptor activation, and is characterized by secretion of the proangiogenic factors hepatocyte growth factor, vascular endothelial growth factor, plasminogen activator, urokinase and placental growth factor, and reduced secretion of the antiangiogenic factor pentraxin-3 from adjacent fibroblasts. In vivo, Tazarotene enhanced the growth of mature and functional microvessels in Matrigel implants and wound healing models, and increased blood flow. Notably, in ear punch wound healing model, Tazarotene promoted tissue repair characterized by rapid ear punch closure with normal-appearing skin containing new hair follicles, and maturing collagen fibers. Our study suggests that Tazarotene, an FDA-approved small molecule, could be potentially exploited for therapeutic applications in neovascularization and wound healing.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Fibroblasts/cytology , Nicotinic Acids/administration & dosage , Receptors, Retinoic Acid/metabolism , Wound Healing/drug effects , Angiogenesis Inducing Agents/pharmacology , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Nicotinic Acids/pharmacology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...