Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 642: 724-735, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37037078

ABSTRACT

HYPOTHESIS: Slippery Omniphobic Covalently Attached Liquids (SOCAL) have been proposed for making omnirepellent thin films of self-assembled dimethylsiloxane polymer brushes grafted from silica surfaces. Smooth and flat at very small scale, these fluid surfaces could exhibit a more complex multiscale structure though showing very weak contact angle hysteresis (less than 5°). EXPERIMENT: In this work, coatings were deposited on glass surfaces from an acidic dimethoxydimethylsilane solution under carefully controlled relative humidity. Ellipsometry mapping was used to analyze the surface structuration with nanometric thickness sensitivity. The sliding properties were determined using a drop shape analyzer with a tilting device, and chemical analyses of the coatings were performed using on-surface techniques (XPS, ATR-FTIR spectroscopy). FINDINGS: Coated materials possessed an unexpected surface structure with multiscale semispherical-like features, which surprisingly, did not increase the contact angle hysteresis. A careful study of some parameters of the coating process and the related evolution of the surface properties allowed us to propose a new model of the chemical organization of the polymer to support this remarkable liquid-like behavior. These structures are made of end-grafted strongly adsorbed Guiselin brushes with humidity-dependent thickness: the higher the humidity, the thinner and the more slippery the coating.

2.
Langmuir ; 37(45): 13444-13451, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34726919

ABSTRACT

The lifetimes of single bubbles or foams that are formed in mixtures of liquids can be several orders of magnitude larger than the ones formed in pure liquids. We recently demonstrated that this enhanced stability results from differences between bulk and interfacial concentrations in the mixture, which induce a thickness dependence of the surface tension in liquid films, and thus a stabilizing Marangoni effect. Concentration differences may be associated with nonlinear variations of surface tension with composition and we further investigate their link with foamability of binary mixtures. We show that, for asymmetric binary mixtures, that is, made of molecules of very different sizes, strong nonlinearities in surface tension can be measured, that are associated with large foam lifetimes. When the molecules that occupy the largest surface areas have the smallest surface tension, the surface tension of the mixture varies sublinearly with composition, reflecting an enrichment in this species at the interface with air, as classically reported in the literature. In contrast, when they exhibit the largest surface tension, superlinear variations of surface tension are observed, despite a similar enrichment. We discuss these variations in light of a simple thermodynamic model for ideal mixtures and we demonstrate why foam stability is enhanced for both sublinear and superlinear surface tension variations, thus, shedding new light on foamability without added surfactants.

3.
Soft Matter ; 12(38): 8049-8058, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27714334

ABSTRACT

We report on the poroelastic indentation response of hydrogel thin films geometrically confined within contacts with rigid spherical probes of radii in the millimeter range. Poly(PEGMA) (poly(ethylene glycol) methyl ether methacrylate), poly(DMA) (dimethylacrylamide) and poly(NIPAM) (N-isopropylacrylamide) gel films with thickness less than 15 µm were grafted onto glass substrates using a thiol-ene click chemistry route. Changes in the indentation depth under constant applied load were monitored over time as a function of the film thickness and the radius of curvature of the probe using an interferometric method. In addition, shear properties of the indented films were measured using a lateral contact method. In the case of poly(PEGMA) films, we show that poroelastic indentation behavior is adequately described within the framework of an approximate contact model derived within the limits of confined contact geometries. This model provides simple scaling laws for the characteristic poroelastic time and the equilibrium indentation depth. Conversely, deviations from this model are evidenced for poly(DMA) and poly(NIPAM) films. From lateral contact experiments, these deviations are found to result from strong changes in the shear properties as a result of glass transition (poly(DMA)) or phase separation (poly(NIPAM)) phenomena induced by the drainage of the confined films squeezed between the rigid substrates.

4.
Eur Phys J E Soft Matter ; 34(7): 65, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21744302

ABSTRACT

We measure the flow of water through mixed packings of glass spheres and soft swellable hydrogel grains, at constant sample volume. Permeability values are obtained at constant sample volume and at porosities smaller than random close packing, for different glass bead diameters D and for variable gel grain diameter d, as controlled by the salinity of the water. The gel content is also varied. We find that the permeability decays exponentially in n(D/d )( b ), where n = N (gel)/N (glass) is the gel to glass bead number ratio and b is approximately 3. Therefore, flow properties are determined by the volume fraction of gel beads. A simple model based on the porosity of overlapping spheres is used to account for these observations.


Subject(s)
Hydrogels/chemistry , Microspheres , Water/chemistry , Glass/chemistry , Particle Size , Permeability , Porosity , Rheology , Salts/chemistry , Surface Properties , Viscosity
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041403, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230273

ABSTRACT

An exact method is developed for computing the height of an elastic medium subjected to centrifugal compression, for arbitrary constitutive relation between stress and strain. Example solutions are obtained for power-law media and for cases where the stress diverges at a critical strain--for example as required by packings composed of deformable but incompressible particles. Experimental data are presented for the centrifugal compression of thermo-responsive N-isopropylacrylamide (NIPA) microgel beads in water. For small radial acceleration, the results are consistent with Hertzian elasticity, and are analyzed in terms of the Young elastic modulus of the bead material. For large radial acceleration, the sample compression asymptotes to a value corresponding to a space-filling particle volume fraction of unity. Therefore we conclude that the gel beads are incompressible, and deform without deswelling. In addition, we find that the Young elastic modulus of the particulate gel material scales with cross-link density raised to the power 3.3±0.8, somewhat larger than the Flory expectation.

6.
Phys Rev Lett ; 105(17): 175701, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231059

ABSTRACT

The rheology near jamming of a suspension of soft colloidal spheres is studied using a custom microfluidic rheometer that provides the stress versus strain rate over many decades. We find non-Newtonian behavior below the jamming concentration and yield-stress behavior above it. The data may be collapsed onto two branches with critical scaling exponents that agree with expectations based on Hertzian contacts and viscous drag. These results support the conclusion that jamming is similar to a critical phase transition, but with interaction-dependent exponents.

7.
Langmuir ; 23(13): 6966-74, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17511481

ABSTRACT

Adhesion at polydimethylsiloxane (PDMS)-acrylic adhesive interfaces is shown to be enhanced through micropatterning of the PDMS substrate. By varying the geometry of the patterns (groves and hexagonal arrays of pillars of micrometer sizes, obtained through soft lithography techniques) and comparing rigid and deformable substrates, the respective roles of the geometry and the size and flexibility of the pattern features on the level of adhesion have been analyzed. For cylindrical pillars, two regimes are clearly identified: for a relatively low aspect ratio (h/r < 3, with h and r, respectively, the height and the radius of the pillars), soft patterned substrates are more efficient than rigid ones at increasing adhesion, pointing out the role of the elastic energy associated with the deformation of the pattern that is lost when the adhesive detaches from the substrate. Using scaling laws, the predominant contribution to that elastic energy can be further identified: deformation of the substrate underlying the pillars for h/r < 1.6 or bending of the pillars for h/r > 1.6.; for a high aspect ratio (h/r > 3), only rigid patterned substrates enhance adhesion, then the only possible contribution to energy dissipation comes from the enhanced viscoelastic losses associated with the pattern that induce modifications of the strain field within the adhesive layer. Soft, high aspect ratio patterns lose their efficiency even if still bent under the effect of the peel forces. This is because when bent, some of the pillars touch each other and remain stuck together, lying flat on the surface after the passage of the peel front. The bending elastic energy of the pillars (which is still lost) is then balanced by the corresponding gain in surface energy of the substrate in the peeled region. These systematic experiments demonstrate that the ability of the patterned surface to be deformed plays a crucial role in enhancing adhesion and allow us to propose a way to fine tune the level of adhesion at PDMS-acrylic adhesive interfaces, independently of the chemistry of the adhesive.

8.
Eur Phys J E Soft Matter ; 10(4): 345-53, 2003 Apr.
Article in English | MEDLINE | ID: mdl-15015098

ABSTRACT

A soft bead (radius Rb) is pressed with a force F against a hydrophobic glass plate through a water drop ("wet" JKR set-up). We observe with a fast camera the growth of the contact zone bridging the rubber bead to the glass. Depending on the approach velocity V, two regimes are observed: i) at large V a liquid film is squeezed at the interface and dewets by nucleation and growth of a dry contact; ii) at low velocities, the bead remains nearly spherical. As it comes into contact, the rubber bead spreads on the glass with a characteristic time (in the range of one millisecond) tau approximately eta Rb2/F, where eta is the liquid viscosity. The laws of spreading are interpreted by a balance of global mechanical and viscous forces.


Subject(s)
Energy Transfer , Models, Chemical , Motion , Rubber/chemistry , Water/chemistry , Computer Simulation , Elasticity , Friction , Micromanipulation , Particle Size , Reproducibility of Results , Sensitivity and Specificity , Surface Tension , Tissue Adhesions , Viscosity , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...