Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res Cogn ; 27: 100221, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34660212

ABSTRACT

Schizophrenia is often a severe and debilitating mental illness, frequently associated with impairments in social cognition that hinder individuals' abilities to relate to others and integrate effectively in society. Oxytocin has emerged as a putative therapeutic agent for treating social deficits in schizophrenia, but the mode of action remains unclear. This placebo-controlled crossover study aimed to elucidate the neural underpinnings of oxytocin administration in patients with schizophrenia. 20 patients with schizophrenia were examined using functional magnetic resonance imaging under oxytocin (40 IU) or placebo nasal spray. Participants performed a stochastically rewarded decision-making task that incorporated elements of social valence provided by different facial expressions, i.e. happy, angry and neutral. Oxytocin attenuated the normal bias in selecting the happy face accompanied by reduced activation in a network of brain regions that support mentalising, processing of facial emotion, salience, aversion, uncertainty and ambiguity in social stimuli, including amygdala, temporo-parietal junction, posterior cingulate cortex, precuneus and insula. These pro-social effects may contribute to the facilitation of social engagement and social interactions in patients with schizophrenia and warrant further investigation in future clinical trials for social cognitive impairments in schizophrenia.

2.
Neuroimage Clin ; 30: 102631, 2021.
Article in English | MEDLINE | ID: mdl-33799270

ABSTRACT

Antipsychotic treatment resistance affects a third of people with schizophrenia and the underlying mechanism remains unclear. We used an fMRI emotion-yoked reward learning task, allied to prefrontal cortical glutamate levels, to explain the role of cognitive control in differentiating treatment-resistant from responsive patients. We investigated how reward learning is disrupted at the network level in 21 medicated treatment-responsive and 20 medicated treatment-resistant patients with schizophrenia compared with 24 healthy controls (HC). Dynamic Causal Modelling assessed how effective connectivity between regions in a cortico-striatal-limbic network is disrupted in each patient group compared to HC. Connectivity was also examined with respect to symptoms, salience and anterior cingulate (ACC) glutamate levels measured from the same region of the ACC. We found that ACC connectivity differentiated these patient groups, with responsive patients exhibiting increased top-down connectivity from ACC to sensory regions and reduced ACC drive to the striatum, while resistant patients showed altered connectivity within the ACC itself. In these resistant patients, the ACC drive to striatum was positively correlated with their symptom severity. ACC glutamate levels were found to correlate with ACC control over sensory regions in responsive patients but not in resistant patients. We suggest a central non-dopaminergic impairment that impacts cognitive control networks in treatment-resistant schizophrenia. This impairment was associated with disrupted reward learning and could be underpinned by aberrant glutamate function. These findings should form the focus of future treatment strategies (e.g. glutamatergic targets and giving clozapine earlier) in resistant patients.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/therapeutic use , Cognition , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...