Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 23(1): e202100602, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34708481

ABSTRACT

Choline-based electrolytes have been proposed as environmentally friendly and low-cost alternatives for secondary zinc air batteries. Choline acetate [Ch]+ [OAc]- in protic (D2 O) and aprotic (DMSO-d6 ) solvents has been studied by means of concentration-dependent 1 H NMR, viscosity, and density measurements. The viscosities have been calculated on the basis of the Jones-Dole equation and showed that the dominant contribution originates from short-range ion-solvent interactions. Site-specific association affinities were assigned from NMR chemical shift titrations. In DMSO-d6 , the hydroxyl group of choline was found to have the smallest dissociation constant followed by the methyl group of acetate. The corresponding Gibbs energies at low concentration were found to be in agreement with a solvent-separated ion pair (2SIP) configuration, whereas at concentrations above 300 mM, a solvent-shared ion pair (SIP) configuration was assigned. For [Ch]+ [OAc]- in D2 O, association effects were found to be weaker, attributed to the high dielectric constant of the solvent. On time scales on the order of 100 ms, NMR linewidth perturbations indicated a change in the local rotational dynamics of the ions, attributed to short-range cation-solvent interactions and not to solvent viscosity. At 184 mM, ∼ 40 % of the cations in DMSO-d6 and ∼ 10 % in D2 O were found to exhibit short-range interactions, as indicated by the linewidth perturbations. It was found that at about 300 mM, the ions in DMSO-d6 exhibit a transition from free to collective translational dynamics on time scales on the order of 400 ms. In DMSO-d6 , both ions were found to be almost equally solvated, whereas in D2 O solvation of acetate was stronger, as indicated by the obtained effective hydrodynamic radii. For [Ch]+ [OAc]- in DMSO-d6 , the results suggest a solvent-shared ion association with weak H-bonding interactions for concentrations between 0.3-1 M. Overall, the extent of ion association in solvents such as DMSO is not expected to significantly limit charge transport and hinder the performance of choline-based electrolytes.


Subject(s)
Acetates , Electrolytes , Choline , Ions , Solvents
2.
Chemistry ; 24(47): 12298-12317, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29575186

ABSTRACT

Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...