Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38316556

ABSTRACT

Synapses are specialized intercellular junctions connecting pre- and postsynaptic neurons into functional neural circuits. Synaptic cell adhesion molecules (CAMs) constitute key players in synapse development that engage in homo- or heterophilic interactions across the synaptic cleft. Decades of research have identified numerous synaptic CAMs, mapped their trans-synaptic interactions, and determined their role in orchestrating synaptic connectivity. However, surprisingly little is known about the molecular mechanisms that translate trans-synaptic adhesion into the assembly of pre- and postsynaptic compartments. Here, we provide an overview of the intracellular signaling pathways that are engaged by synaptic CAMs and highlight outstanding issues to be addressed in future work.


Subject(s)
Cell Adhesion Molecules , Signal Transduction , Synapses , Synapses/metabolism , Synapses/physiology , Cell Adhesion Molecules/metabolism , Animals , Humans , Neurons/metabolism , Cell Adhesion
2.
PLoS Biol ; 17(10): e3000466, 2019 10.
Article in English | MEDLINE | ID: mdl-31658245

ABSTRACT

The pre- and postsynaptic membranes comprising the synaptic junction differ in protein composition. The membrane trafficking mechanisms by which neurons control surface polarization of synaptic receptors remain poorly understood. The sorting receptor Sortilin-related CNS expressed 1 (SorCS1) is a critical regulator of trafficking of neuronal receptors, including the presynaptic adhesion molecule neurexin (Nrxn), an essential synaptic organizer. Here, we show that SorCS1 maintains a balance between axonal and dendritic Nrxn surface levels in the same neuron. Newly synthesized Nrxn1α traffics to the dendritic surface, where it is endocytosed. Endosomal SorCS1 interacts with the Rab11 GTPase effector Rab11 family-interacting protein 5 (Rab11FIP5)/Rab11 interacting protein (Rip11) to facilitate the transition of internalized Nrxn1α from early to recycling endosomes and bias Nrxn1α surface polarization towards the axon. In the absence of SorCS1, Nrxn1α accumulates in early endosomes and mispolarizes to the dendritic surface, impairing presynaptic differentiation and function. Thus, SorCS1-mediated sorting in dendritic endosomes controls Nrxn axonal surface polarization required for proper synapse development and function.


Subject(s)
Calcium-Binding Proteins/genetics , Cerebral Cortex/metabolism , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Receptors, Cell Surface/genetics , Synaptic Membranes/metabolism , Synaptic Transmission/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Polarity , Cerebral Cortex/cytology , Embryo, Mammalian , Endocytosis , Endosomes/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurons/ultrastructure , Primary Cell Culture , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Rats , Rats, Wistar , Receptors, Cell Surface/metabolism , Synaptic Membranes/ultrastructure , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Mol Cell Neurosci ; 91: 34-47, 2018 09.
Article in English | MEDLINE | ID: mdl-29631018

ABSTRACT

Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Neurogenesis , Secretory Pathway , Synapses/metabolism , Animals , Humans , Neuronal Plasticity , Protein Transport , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...