Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 50(97): 15297-300, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25051118

ABSTRACT

Manganese blue is a synthetic barium manganate(VI) sulphate compound that was produced from 1935 to the 1990s and was used both as a blue pigment in works of art and by conservators in the restoration of paintings. The photophysical properties of the compound are described as well as the setup needed to record the spatial distribution of the pigment in works of art.


Subject(s)
Barium/chemistry , Coloring Agents/chemistry , Manganese/chemistry , Sulfates/chemistry , Luminescence , Spectrophotometry, Ultraviolet
2.
Appl Spectrosc ; 65(1): 43-51, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21211153

ABSTRACT

Bulk thermal alterations to chlorite schist occurring at temperatures above 450 °C are traditionally studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, or thermogravimetric analysis (TGA), but lower temperature changes that lead to structural and chemical alteration, including changes in oxidation state that are not followed by a crystalline modification, are not detectable using these techniques. In this paper we present the results of the first study to examine the application of fiber-optic reflection spectroscopy (FORS) for the detection and quantification of low-temperature thermal alterations in chlorite schist. Such changes have been observed during research on the thermal behavior of medieval (12th-13th centuries AD) chlorite cooking pots from the archaeological site of Merv, Turkmenistan. FORS was used to investigate these changes, testing the archaeological samples against a model data set of experimental reference specimens. The results demonstrate the potential of FORS for tracking low-temperature thermal alterations and offer the opportunity to examine temperatures attained by ancient chlorite vessels during their past use in cooking activities.

3.
Appl Spectrosc ; 63(12): 1323-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20030975

ABSTRACT

The variations of the fluorescence emission of carmine lake travelling through an absorbing and scattering medium, such as a paint layer, were investigated by ultraviolet (UV)-visible absorption, fluorescence spectroscopy, and imaging techniques. Samples of the lake were studied in dilute and saturated solutions, on a reference test panel and a real case study. Relevant spectral modifications have been observed as a function of the lake concentration mainly consisting of a fluorescence quenching, red shift of emission maxima, and deformation of emission band. The application of a correction factor based on the Kubelka-Munk model allowed fluorescence spectra obtained in solution and on painted samples of known composition to be compared and correlated, highlighting that the fluorescence of the lake within paint layers is affected by both self-absorption and aggregation phenomena. This approach has been successfully applied on a painting by G. Vasari for the noninvasive identification of carmine lake. The results reported here emphasize the necessity of taking physical phenomena into account in the interpretation of the fluorescence spectra for a proper and reliable characterization and identification of painting materials in works of art.

4.
Chem Commun (Camb) ; (23): 3392-4, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503881

ABSTRACT

Cuprorivaite (CaCuSi(4)O(10), also known as Egyptian blue) exhibits an exceptionally high emission quantum efficiency in the near-infrared region (lambda(max) = 910 nm, Phi(EM) = 10.5%) and a long excited state lifetime (107 mus); these properties make it appealing for several applications in the fields of biomedical analysis, telecommunications and lasers.


Subject(s)
Coloring Agents/chemistry , Copper/chemistry , Infrared Rays , Silicates/chemistry , Luminescent Measurements
5.
Appl Spectrosc ; 62(12): 1295-302, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19094387

ABSTRACT

Ultraviolet-induced fluorescence spectroscopy is a commonly used technique for the characterization and identification of painting materials, such as organic binders and colorants. Its interpretation is strictly connected to both the experimental setup and an understanding of the physical and chemical interactions among materials in paint layers, which are commonly composed of a fluorescent organic binder and a pigment. When irradiated with ultraviolet radiation, the light emitted by fluorophores present in the organic binder undergoes several types of interactions, in particular scattering and absorption by neighboring pigmented particles and auto-absorption. As a result of scattering and absorption phenomena, the emission spectrum is deformed according to the physical properties of the surrounding pigmented particles. This can lead to shifts of the emission maxima and/or to the formation of apparent new emission bands. The extent of the modifications to the emission spectra, caused by auto-absorption and selective absorption phenomena, may lead to the erroneous characterization or identification of the fluorescent materials. As a consequence, the interpretation of the emission signal can be greatly compromised. A correction based on the Kubelka-Munk theory is proposed to evaluate the extent of the spectral distortion and is assessed on modern replicas of wall paintings of known composition. Although the model cannot be applied to all cases, qualitative distinctions between real and apparent emissions are achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...