Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 119(25): 8037-47, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26035001

ABSTRACT

Several membrane proteins and numerous membrane-active peptides have been studied in detergent micelles by solution NMR. However, the detailed structure of these complexes remains unknown. We propose a modeling approach that treats the protein and detergent in atomistic detail and the solvent implicitly. The model is based on previous work on dodecylphosphocholine micelles, adapted for use with the CHARMM36 force field and extended to sodium dodecyl sulfate micelles. Solvation parameters were slightly adjusted to reproduce experimental data on aggregation numbers and critical micelle concentrations. To test the approach, several membrane-active peptides and three ß-barrel membrane proteins were subjected to molecular dynamics simulations in the presence of a large number of detergent molecules. Their experimentally determined secondary structure was maintained and the RMSD values were less than 2 Å. Deformations were commonly observed in the N or C termini. The atomistic view of the protein-micelle systems that this approach provides could be useful in interpreting biophysical experiments carried out in the presence of detergent.


Subject(s)
Detergents/chemistry , Micelles , Molecular Dynamics Simulation , Proteins/chemistry , Water/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Protein Multimerization , Protein Structure, Secondary , Sodium Dodecyl Sulfate/chemistry , Solvents/chemistry
2.
Biophys Chem ; 129(2-3): 242-50, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17611012

ABSTRACT

Detailed knowledge of the pH-dependence in both folded and unfolded states of proteins is essential to understand the role of electrostatics in protein stability. The increasing number of natively disordered proteins constitutes an excellent source for the NMR analysis of pKa values in the unfolded state of proteins. However, the tendency of many natively disordered proteins to aggregate via intermolecular hydrophobic clusters limits their NMR analysis over a wide pH range. To assess whether the pKa values in natively disordered polypeptides can be extrapolated from NMR measurements in the presence of denaturants, the natively disordered backbone of the C-terminal fragment 75 to 105 of Human Thioredoxin was studied. First, assignments using triple resonance experiments were performed to confirm lack of secondary structure. Then the pH-dependence of the amides and carboxylate side chains of Glu residues (Glu88, Glu95, Glu98, and Glu103) in the pH range from 2.0 to 7.0 was monitored using 2D 1H15N HSQC and 3D C(CO)NH experiments, and the behavior of their amides and corresponding carboxyl groups was compared to confirm the absence of nonlocal interactions. Lastly, the effect of increasing dimethyl urea concentration on the pKa values of these Glu residues was monitored. The results indicate that: (i) the dispersion in the pKa of carboxyl groups and the pH midpoints of amides in Glu residues is about 0.5 pH units and 0.6 pH units, respectively; (ii) the backbone amides of the Glu residues exhibit pH midpoints which are within 0.2 pH units from those of their carboxylates; (iii) the addition of denaturant produces upshifts in the pKa values of Glu residues that are nearly independent of their position in the sequence; and (iv) these upshifts show a nonlinear behavior in denaturant concentration, complicating the extrapolation to zero denaturant. Nevertheless, the relative ordering of the pKa values of Glu residues is preserved over the whole range of denaturant concentrations indicating that measurements at high denaturant concentration (e.g. 4 M dimethyl urea) can yield a qualitatively correct ranking of the pKa of these residues in natively disordered proteins whose pH-dependence cannot be monitored directly by NMR.


Subject(s)
Glutamic Acid/chemistry , Models, Chemical , Protein Folding , Proteins/chemistry , Amides/chemistry , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Static Electricity , Thioredoxins/chemistry
3.
Biochim Biophys Acta ; 1764(7): 1227-33, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16787768

ABSTRACT

Detailed knowledge of the pH-dependence of ionizable residues in both folded and unfolded states of proteins is essential to understand the role of electrostatics in protein folding and stability. The reassembly of E. coli Thioredoxin (Trx) by complementation of its two disordered fragments (1-37/38-108) provides a folded heterodimer in equilibrium with its unfolded state which, based on circular dichroism and NMR spectroscopy, consists of two unfolded monomers. To gain insight into the role of electrostatics in protein folding and stability, we compared the pH-dependence of the carboxylate sidechain chemical shift of each Asp/Glu against that of its backbone amide chemical shift in the unfolded heterodimer. We monitored via C(CO)NH experiments four Asp and four Glu in fragments 38 to 108 (C37) of Trx in the pH range from 2.0 to 7.0 and compared them with results from (1)H(15)N HSQC experiments [Pujato et al., Biophys. J., 89 (2005) 3293-3302]. The (1)H(15)N HSQC analysis indicates two segments with quite distinct behavior: (A) a segment from Ala57 to Ala108 in which ionizable residues have up to three contiguous neighbors with pH-dependent backbone amide shifts, and (B) a segment of fifteen contiguous pH-dependent backbone amide shifts (Leu42 to Val56) in which two Asp and two Glu are implicated in medium range interactions. In all cases, the titration curves are simple modified sigmoidals from which a pH-midpoint (pH(m)) can be obtained by fitting. In segment A, the pH(m) of a given backbone amide of Asp/Glu mirrors within 0.15 pH-units that of its carboxylate sidechain (i.e., the pK(a)). In contrast, segment B shows significant differences with absolute values of 0.46 and 0.74 pH-units for Asp and Glu, respectively. The dispersion in the pH(m) of the backbone amide of Asp/Glu is also different in the two segments. Segment A shows a dispersion of 0.31 and 0.17 pH-units for Asp and Glu, respectively. Segment B shows a substantially larger dispersion (0.50 and 1.08 pH-units for Asp and Glu, respectively). In both segments, the dispersion in the pH(m) of its backbone amide is larger than in the pK(a) of the carboxylate sidechain (the latter is only 0.17 and 0.52 pH-units for Asp and Glu, respectively). Our results indicate that the pH(m) of the backbone amide chemical shift of Asp/Glu in a disordered polypeptide segment is a good predictor of its pK(a) whenever there are none or few neighboring backbone amides with similar pH-dependence.


Subject(s)
Amides/chemistry , Aspartic Acid/chemistry , Glutamic Acid/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Hydrogen-Ion Concentration , Molecular Sequence Data , Peptide Fragments/chemistry , Protein Folding , Static Electricity , Thioredoxins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...