Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 33(10): 5939-5952, 2022 10.
Article in English | MEDLINE | ID: mdl-33900924

ABSTRACT

The timing of individual neuronal spikes is essential for biological brains to make fast responses to sensory stimuli. However, conventional artificial neural networks lack the intrinsic temporal coding ability present in biological networks. We propose a spiking neural network model that encodes information in the relative timing of individual spikes. In classification tasks, the output of the network is indicated by the first neuron to spike in the output layer. This temporal coding scheme allows the supervised training of the network with backpropagation, using locally exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. The network operates using a biologically plausible synaptic transfer function. In addition, we use trainable pulses that provide bias, add flexibility during training, and exploit the decayed part of the synaptic function. We show that such networks can be successfully trained on multiple data sets encoded in time, including MNIST. Our model outperforms comparable spiking models on MNIST and achieves similar quality to fully connected conventional networks with the same architecture. The spiking network spontaneously discovers two operating modes, mirroring the accuracy-speed tradeoff observed in human decision-making: a highly accurate but slow regime, and a fast but slightly lower accuracy regime. These results demonstrate the computational power of spiking networks with biological characteristics that encode information in the timing of individual neurons. By studying temporal coding in spiking networks, we aim to create building blocks toward energy-efficient, state-based biologically inspired neural architectures. We provide open-source code for the model.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Learning/physiology , Neurons/physiology , Supervised Machine Learning
2.
Front Neurosci ; 15: 712667, 2021.
Article in English | MEDLINE | ID: mdl-34483829

ABSTRACT

Spiking neural networks with temporal coding schemes process information based on the relative timing of neuronal spikes. In supervised learning tasks, temporal coding allows learning through backpropagation with exact derivatives, and achieves accuracies on par with conventional artificial neural networks. Here we introduce spiking autoencoders with temporal coding and pulses, trained using backpropagation to store and reconstruct images with high fidelity from compact representations. We show that spiking autoencoders with a single layer are able to effectively represent and reconstruct images from the neuromorphically-encoded MNIST and FMNIST datasets. We explore the effect of different spike time target latencies, data noise levels and embedding sizes, as well as the classification performance from the embeddings. The spiking autoencoders achieve results similar to or better than conventional non-spiking autoencoders. We find that inhibition is essential in the functioning of the spiking autoencoders, particularly when the input needs to be memorised for a longer time before the expected output spike times. To reconstruct images with a high target latency, the network learns to accumulate negative evidence and to use the pulses as excitatory triggers for producing the output spikes at the required times. Our results highlight the potential of spiking autoencoders as building blocks for more complex biologically-inspired architectures. We also provide open-source code for the model.

SELECTION OF CITATIONS
SEARCH DETAIL