Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37489135

ABSTRACT

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

2.
Cell Rep ; 42(3): 112153, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36848289

ABSTRACT

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Subject(s)
Citric Acid , Th17 Cells , Mice , Animals , Citrates , Oxidoreductases , Lipids , Pyruvates , Mammals
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166530, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36038039

ABSTRACT

Macrophages undergo extensive metabolic reprogramming during classical pro-inflammatory polarization (M1-like). The accumulation of itaconate has been recognized as both a consequence and mediator of the inflammatory response. In this study we first examined the specific functions of itaconate inside fractionated mitochondria. We show that M1 macrophages produce itaconate de novo via aconitase decarboxylase 1 (ACOD1) inside mitochondria. The carbon for this reaction is not only supplied by oxidative TCA cycling, but also through the reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH). While macrophages are capable of sustaining a certain degree of itaconate production during hypoxia by augmenting the activity of IDH-dependent reductive carboxylation, we demonstrate that sufficient itaconate synthesis requires a balance of reductive and oxidative TCA cycle metabolism in mouse macrophages. In comparison, human macrophages increase itaconate accumulation under hypoxic conditions by augmenting reductive carboxylation activity. We further demonstrated that itaconate attenuates reductive carboxylation at IDH2, restricting its own production and the accumulation of the immunomodulatory metabolites citrate and 2-hydroxyglutarate. In line with this, reductive carboxylation is enhanced in ACOD1-depleted macrophages. Mechanistically, the inhibition of IDH2 by itaconate is linked to the alteration of the mitochondrial NADP+/NADPH ratio and competitive succinate dehydrogenase inhibition. Taken together, our findings extend the current model of TCA cycle reprogramming during pro-inflammatory macrophage activation and identified novel regulatory properties of itaconate.


Subject(s)
Carboxy-Lyases , Citric Acid Cycle , Isocitrate Dehydrogenase , Succinates , Aconitate Hydratase/metabolism , Animals , Carbon/metabolism , Carboxy-Lyases/metabolism , Citrates , Feedback , Humans , Ketoglutaric Acids/metabolism , Mice , NADP/metabolism , Succinate Dehydrogenase/metabolism , Succinates/metabolism
4.
Nat Metab ; 4(5): 524-533, 2022 05.
Article in English | MEDLINE | ID: mdl-35655024

ABSTRACT

Since its discovery in inflammatory macrophages, itaconate has attracted much attention due to its antimicrobial and immunomodulatory activity1-3. However, instead of investigating itaconate itself, most studies used derivatized forms of itaconate and thus the role of non-derivatized itaconate needs to be scrutinized. Mesaconate, a metabolite structurally very close to itaconate, has never been implicated in mammalian cells. Here we show that mesaconate is synthesized in inflammatory macrophages from itaconate. We find that both, non-derivatized itaconate and mesaconate dampen the glycolytic activity to a similar extent, whereas only itaconate is able to repress tricarboxylic acid cycle activity and cellular respiration. In contrast to itaconate, mesaconate does not inhibit succinate dehydrogenase. Despite their distinct impact on metabolism, both metabolites exert similar immunomodulatory effects in pro-inflammatory macrophages, specifically a reduction of interleukin (IL)-6 and IL-12 secretion and an increase of CXCL10 production in a manner that is independent of NRF2 and ATF3. We show that a treatment with neither mesaconate nor itaconate impairs IL-1ß secretion and inflammasome activation. In summary, our results identify mesaconate as an immunomodulatory metabolite in macrophages, which interferes to a lesser extent with cellular metabolism than itaconate.


Subject(s)
Macrophages , Succinates , Animals , Inflammasomes , Macrophages/drug effects , Macrophages/metabolism , Mice , RAW 264.7 Cells , Succinates/metabolism , Succinates/pharmacology
5.
Mol Oncol ; 13(12): 2531-2553, 2019 12.
Article in English | MEDLINE | ID: mdl-31365168

ABSTRACT

Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b-binding protein C-terminal-α-/ß-chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent-positive regulator of the AP, the human factor H-related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VH H targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab-recognising epitopes [VH H(T) or VH H(P)], respectively, were used as HER2 anchoring moieties. Optimised high-FHR4 valence heteromultimeric immunoconjugates [FHR4/VH H(T) or FHR4/VH H(P)] were selected by sequential cell cloning and a selective multistep His-Trap purification. Optimised FHR4-heteromultimeric immunoconjugates successfully overcame FH-mediated complement inhibition threshold, causing increased C3b deposition on SK-OV-3, BT474 and SK-BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement-dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane-anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement-dependent cell-mediated cytotoxicity. We showed that the degree of FHR4-multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH-mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady-state towards activation on tumour cell surface.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents, Immunological , Apolipoproteins/immunology , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Immunoconjugates , Neoplasms , Receptor, ErbB-2 , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apolipoproteins/antagonists & inhibitors , Cell Line, Tumor , Complement Activation/immunology , HEK293 Cells , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology
6.
AIDS ; 30(3): 377-82, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26760231

ABSTRACT

OBJECTIVES: The recent identification of neutralizing antibodies able to prevent viral rebound reemphasized the interest in humoral immune responses to control HIV-1 infection. In this study, we characterized HIV-1-inhibiting sequences from heavy-chain complementary determining region 3 (HCDR3) repertoires of a viremic controller. DESIGN AND METHODS: IgM and IgG-derived HCDR3 repertoires of a viremic controller presenting plasma-neutralizing activity and characterized by over 20 years of infection with a stable CD4 T-cell count were displayed on filamentous phage to identify HCDR3 repertoire-derived peptides inhibiting HIV-1 entry. RESULTS: Screening of phage libraries against recombinant gp120 led to the identification of an HCDR3-derived peptide sequence (LRTV-1) displaying antiviral properties against both X4 and R5 viruses. The interaction of LRTV-1 with gp120 was enhanced upon CD4 binding and sequence comparison revealed homology between LRTV-1 and the second extracellular loop of C-X-C chemokine receptor type 4 (CXCR4) (11/23) and the N-terminus of C-C chemokine receptor type 5 (CCR5) (7/23). Alanine scanning experiments identified different clusters of residues critical for interaction with the viral envelope protein. CONCLUSIONS: LRTV-1 peptide is to date the smallest human HCDR3 repertoire-derived peptide identified by phage display inhibiting HIV entry of R5 and X4 viruses. This peptide recognizes a CD4-dependent gp120 epitope critical for coreceptor binding and mimics the surface of CXCR4 and CCR5. Our data emphasize the potential of human HCDR3 immune repertoires as sources of small biologically active peptides for HIV cure.


Subject(s)
Antibodies, Neutralizing/immunology , Complementarity Determining Regions/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , Virus Internalization/drug effects , Anti-HIV Agents/chemistry , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , HIV Long-Term Survivors , HIV-1/physiology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Peptide Library , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Receptors, CCR5/chemistry , Receptors, CXCR4/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...