Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35100111

ABSTRACT

Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.


Subject(s)
Image Processing, Computer-Assisted , Skull , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Skull/diagnostic imaging , Ultrasonography
2.
Sci Rep ; 12(1): 407, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013407

ABSTRACT

The acoustic wave equation describes wave propagation directly from basic physical laws, even in heterogeneous acoustic media. When numerically simulating waves with the wave equation, contrasts in the medium parameters automatically generate all scattering effects. For some applications - such as propagation analysis or certain wave-equation based imaging techniques - it is desirable to suppress these reflections, as we are only interested in the transmitted wave-field. To achieve this, a modification to the constitutive relations is proposed, yielding an extra term that suppresses waves with reference to a preferred direction. The scale-factor [Formula: see text] of this extra term can either be interpreted as a penetration depth or as a typical decay time. This modified theory is implemented using a staggered-grid, time-domain finite difference scheme, where the acoustic Poynting-vector is used to estimate the local propagation direction of the wave-field. The method was successfully used to suppress reflections in media with bone tissue (medical ultrasound) and geophysical subsurface structures, while introducing only minor perturbations to the transmitted wave-field and a small increase in computation time.

3.
Sci Rep ; 8(1): 2497, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410493

ABSTRACT

A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source response from the enclosing boundary into the medium. However, in many practical situations the medium can be accessed from one side only. In those cases the time-reversal approach is not exact. Here, we demonstrate the experimental design and use of complex focusing functions to create virtual acoustic sources and virtual receivers inside an inhomogeneous medium with single-sided access. The retrieved virtual acoustic responses between those sources and receivers mimic the complex propagation and multiple scattering paths of waves that would be ignited by physical sources and recorded by physical receivers inside the medium. The possibility to predict complex virtual acoustic responses between any two points inside an inhomogeneous medium, without needing a detailed model of the medium, has large potential for holographic imaging and monitoring of objects with single-sided access, ranging from photoacoustic medical imaging to the monitoring of induced-earthquake waves all the way from the source to the earth's surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...