Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Biophys J ; 122(21): 4176-4193, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37766427

ABSTRACT

The advancement of single-channel-level recording via the patch-clamp technique has provided a powerful means of assessing the detailed behaviors of various types of ion channels in native and exogenously expressed cellular environments. However, such recordings of gap junction (GJ) channels are hampered by unique challenges that are related to their unusual intercellular configuration and natural clustering into densely packed plaques. Thus, the methods for reliable cross-correlation of data recorded at macroscopic and single-channel levels are lacking in studies of GJs. To address this issue, we combined our previously published four-state model (4SM) of GJ channel gating by voltage with maximum likelihood estimation (MLE)-based analyses of electrophysiological recordings of GJ channel currents. First, we consider evaluation of single-channel characteristics and the methods for efficient stochastic simulation of single GJ channels from the kinetic scheme described by 4SM using data obtained from macroscopic recordings. We then present an MLE-based methodology for extraction of information about transition rates for GJ channels and, ultimately, gating parameters defined in 4SM from recordings with visible unitary events. The validity of the proposed methodology is illustrated using stochastic simulations of single GJ channels and is extended to electrophysiological data recorded in cells expressing connexin 43 tagged with enhanced green fluorescent protein.


Subject(s)
Connexins , Ion Channel Gating , Humans , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , HeLa Cells
2.
Front Physiol ; 13: 839223, 2022.
Article in English | MEDLINE | ID: mdl-35264979

ABSTRACT

Electrical synapses between neurons in the mammalian CNS are predominantly formed of the connexin36 (Cx36) gap junction (GJ) channel protein. Unique among GJs formed of a number of other members of the Cx gene family, Cx36 GJs possess a high sensitivity to intracellular Mg2+ that can robustly act to modulate the strength of electrical synaptic transmission. Although a putative Mg2+ binding site was previously identified to reside in the aqueous pore in the first extracellular (E1) loop domain, the involvement of the N-terminal (NT) domain in the atypical response of Cx36 GJs to pH was shown to depend on intracellular levels of Mg2+. In this study, we examined the impact of amino acid substitutions in the NT domain on Mg2+ modulation of Cx36 GJs, focusing on positions predicted to line the pore funnel, which constitutes the cytoplasmic entrance of the channel pore. We find that charge substitutions at the 8th, 13th, and 18th positions had pronounced effects on Mg2+ sensitivity, particularly at position 13 at which an A13K substitution completely abolished sensitivity to Mg2+. To assess potential mechanisms of Mg2+ action, we constructed and tested a series of mathematical models that took into account gating of the component hemichannels in a Cx36 GJ channel as well as Mg2+ binding to each hemichannel in open and/or closed states. Simultaneous model fitting of measurements of junctional conductance, gj, and transjunctional Mg2+ fluxes using a fluorescent Mg2+ indicator suggested that the most viable mechanism for Cx36 regulation by Mg2+ entails the binding of Mg2+ to and subsequent stabilization of the closed state in each hemichannel. Reduced permeability to Mg2+ was also evident, particularly for the A13K substitution, but homology modeling of all charge-substituted NT variants showed only a moderate correlation between a reduction in the negative electrostatic potential and a reduction in the permeability to Mg2+ ions. Given the reported role of the E1 domain in Mg2+ binding together with the impact of NT substitutions on gating and the apparent state-dependence of Mg2+ binding, this study suggests that the NT domain can be an integral part of Mg2+ modulation of Cx36 GJs likely through the coupling of conformational changes between NT and E1 domains.

3.
Biophys J ; 119(8): 1640-1655, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32950074

ABSTRACT

Gap junction (GJ) channels, formed of connexin (Cx) proteins, provide a direct pathway for metabolic and electrical cell-to-cell communication. These specialized channels are not just passive conduits for the passage of ions and metabolites but have been shown to gate robustly in response to transjunctional voltage, Vj, the voltage difference between two coupled cells. Voltage gating of GJs could play a physiological role, particularly in excitable cells, which can generate large transients in membrane potential during the propagation of action potentials. We present a mathematical/computational model of GJ channel voltage gating to assess properties of GJ channels that takes into account contingent gating of two series hemichannels and the distribution of Vj across each hemichannel. From electrophysiological recordings in cell cultures expressing Cx43 or Cx45, the principal isoforms expressed in cardiac tissue, various data sets were fitted simultaneously using global optimization. The results showed that the model is capable of describing both steady-state and kinetic properties of homotypic and heterotypic GJ channels composed of these Cxs. Moreover, mathematical analyses showed that the model can be simplified to a reversible two-state system and solved analytically using a rapid equilibrium assumption. Given that excitable cells are arranged in interconnected networks, the equilibrium assumption allows for a substantial reduction in computation time, which is useful in simulations of large clusters of coupled cells. Overall, this model can serve as a tool for the studying of GJ channel gating and its effects on the spread of excitation in networks of electrically coupled cells.


Subject(s)
Gap Junctions , Ion Channel Gating , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Kinetics
4.
Neurosci Lett ; 695: 40-45, 2019 03 16.
Article in English | MEDLINE | ID: mdl-28917982

ABSTRACT

Connexins play vital roles in hearing, including promoting cochlear development and sustaining auditory function in the mature cochlea. Mutations in connexins expressed in the cochlear epithelium, Cx26 and Cx30, cause sensorineural deafness and in the case of Cx26, is one of the most common causes of non-syndromic, hereditary deafness. Connexins function as gap junction channels and as hemichannels, which mediate intercellular and transmembrane signaling, respectively. Both channel configurations can play important, but very different roles in the cochlea. The potential roles connexin hemichannels can play are discussed both in normal cochlear function and in promoting pathogenesis that can lead to hearing loss.


Subject(s)
Cochlea/physiology , Connexins/metabolism , Animals , Cochlea/metabolism , Connexins/genetics , Gap Junctions/genetics , Gap Junctions/metabolism , Humans
5.
Biochim Biophys Acta Biomembr ; 1860(1): 192-201, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28457858

ABSTRACT

Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Subject(s)
Connexins/genetics , Connexins/metabolism , Genetic Diseases, Inborn , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/therapy , Humans
6.
J Gen Physiol ; 148(1): 25-42, 2016 07.
Article in English | MEDLINE | ID: mdl-27353444

ABSTRACT

Connexin 26 (Cx26) is a transmembrane protein that forms hexameric hemichannels that can function when unopposed or dock to form intercellular gap junction channels. Aberrantly functioning unopposed hemichannels are a common feature of syndromic deafness associated with mutations in Cx26. In this study, we examine two different mutations at the same position in the N-terminal domain of Cx26, N14K and N14Y, which have been reported to produce different phenotypes in patients. We find that both N14K and N14Y, when expressed alone or together with wild-type (WT) Cx26, result in functional hemichannels with widely disparate functional properties. N14K currents are robust, whereas N14Y currents are small. The two mutants also exhibit opposite shifts in voltage-dependent loop gating, such that activation of N14K and N14Y is shifted in the hyperpolarizing and depolarizing directions, respectively. Deactivation kinetics suggests that N14K stabilizes and N14Y destabilizes the open state. Single N14K hemichannel recordings in low extracellular Ca(2+) show no evidence of stable closing transitions associated with loop gating, and N14K hemichannels are insensitive to pH. Together, these properties cause N14K hemichannels to be particularly refractory to closing. Although we find that the unitary conductance of N14K is indistinguishable from WT Cx26, mutagenesis and substituted cysteine accessibility studies suggest that the N14 residue is exposed to the pore and that the differential properties of N14K and N14Y hemichannels likely result from altered electrostatic interactions between the N terminus and the cytoplasmic extension of TM2 in the adjacent subunit. The combined effects that we observe on loop gating and pH regulation may explain the unusual buccal cutaneous manifestations in patients carrying the N14K mutation. Our work also provides new considerations regarding the underlying molecular mechanism of loop gating, which controls hemichannel opening in the plasma membrane.


Subject(s)
Connexin 26/genetics , Deafness/genetics , Gap Junctions/metabolism , Ion Channel Gating/genetics , Mutation , Animals , Cell Membrane/metabolism , Connexin 26/metabolism , Crystallography, X-Ray , Deafness/metabolism , Humans , Xenopus
7.
Front Cell Neurosci ; 8: 354, 2014.
Article in English | MEDLINE | ID: mdl-25386120

ABSTRACT

Mutation of the GJB2 gene, which encodes the connexin 26 (Cx26) gap junction (GJ) protein, is the most common cause of hereditary, sensorineural hearing loss. Cx26 is not expressed in hair cells, but is widely expressed throughout the non-sensory epithelial cells of the cochlea. Most GJB2 mutations produce non-syndromic deafness, but a subset produces syndromic deafness in which profound hearing loss is accompanied by a diverse array of infectious and neoplastic cutaneous disorders that can be fatal. Although GJ channels, which are assembled by the docking of two, so-called hemichannels (HCs), have been the main focus of deafness-associated disease models, it is now evident that the HCs themselves can function in the absence of docking and contribute to signaling across the cell membrane as a novel class of ion channel. A notable feature of syndromic deafness mutants is that the HCs exhibit aberrant behaviors providing a plausible basis for disease that is associated with excessive or altered contributions of Cx26 HCs that, in turn, lead to compromised cell integrity. Here we discuss some of the aberrant Cx26 HC properties that have been described for mutants associated with keratitis-ichthyosis-deafness (KID) syndrome, a particularly severe Cx26-associated syndrome, which shed light on genotype-phenotype relationships and causes underlying cochlear dysfunction.

8.
J Biol Chem ; 289(31): 21519-32, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24939841

ABSTRACT

Excessive opening of undocked Cx26 hemichannels in the plasma membrane is associated with disease pathogenesis in keratitis-ichthyosis-deafness (KID) syndrome. Thus far, excessive opening of KID mutant hemichannels has been attributed, almost solely, to aberrant inhibition by extracellular Ca(2+). This study presents two new possible contributing factors, pH and Zn(2+). Plasma pH levels and micromolar concentrations of Zn(2+) inhibit WT Cx26 hemichannels. However, A40V KID mutant hemichannels show substantially reduced inhibition by these factors. Using excised patches, acidification was shown to be effective from either side of the membrane, suggesting a protonation site accessible to H(+) flux through the pore. Sensitivity to pH was not dependent on extracellular aminosulfonate pH buffers. Single channel recordings showed that acidification did not affect unitary conductance or block the hemichannel but rather promoted gating to the closed state with transitions characteristic of the intrinsic loop gating mechanism. Examination of two nearby KID mutants in the E1 domain, G45E and D50N, showed no changes in modulation by pH or Zn(2+). N-bromo-succinimide, but not thiol-specific reagents, attenuated both pH and Zn(2+) responses. Individually mutating each of the five His residues in WT Cx26 did not reveal a key His residue that conferred sensitivity to pH or Zn(2+). From these data and the crystal structure of Cx26 that suggests that Ala-40 contributes to an intrasubunit hydrophobic core, the principal effect of the A40V mutation is probably a perturbation in structure that affects loop gating, thereby affecting multiple factors that act to close Cx26 hemichannels via this gating mechanism.


Subject(s)
Connexins/antagonists & inhibitors , Deafness/genetics , Ichthyosis/genetics , Keratitis/genetics , Mutation , Zinc/pharmacology , Animals , Connexin 26 , Connexins/genetics , Connexins/physiology , Humans , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Xenopus
9.
J Gen Physiol ; 142(1): 3-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23797419

ABSTRACT

Mutations in the GJB2 gene, which encodes Cx26, are the most common cause of sensorineural deafness. In syndromic cases, such as keratitis-ichthyosis-deafness (KID) syndrome, in which deafness is accompanied by corneal inflammation and hyperkeratotic skin, aberrant hemichannel function has emerged as the leading contributing factor. We found that D50N, the most frequent mutation associated with KID syndrome, produces multiple aberrant hemichannel properties, including loss of inhibition by extracellular Ca(2+), decreased unitary conductance, increased open hemichannel current rectification and voltage-shifted activation. We demonstrate that D50 is a pore-lining residue and that negative charge at this position strongly influences open hemichannel properties. Examination of two putative intersubunit interactions involving D50 suggested by the Cx26 crystal structure, K61-D50 and Q48-D50, showed no evidence of a K61-D50 interaction in hemichannels. However, our data suggest that Q48 and D50 interact and disruption of this interaction shifts hemichannel activation positive along the voltage axis. Additional shifts in activation by extracellular Ca(2+) remained in the absence of a D50-Q48 interaction but required an Asp or Glu at position 50, suggesting a separate electrostatic mechanism that critically involves this position. In gap junction (GJ) channels, D50 substitutions produced loss of function, whereas K61 substitutions functioned as GJ channels but not as hemichannels. These data demonstrate that D50 exerts effects on Cx26 hemichannel and GJ channel function as a result of its dual role as a pore residue and a component of an intersubunit complex in the extracellular region of the hemichannel. Differences in the effects of substitutions in GJ channels and hemichannels suggest that perturbations in structure occur upon hemichannel docking that significantly impact function. Collectively, these data provide insight into Cx26 structure-function and the underlying bases for the phenotypes associated with KID syndrome patients carrying the D50N mutation.


Subject(s)
Connexins/genetics , Connexins/metabolism , Deafness/genetics , Ichthyosis/genetics , Keratitis/genetics , Mutation, Missense , Action Potentials , Amino Acid Sequence , Animals , Calcium/pharmacology , Connexin 26 , Connexins/antagonists & inhibitors , Connexins/chemistry , Humans , Ion Channel Gating , Molecular Sequence Data , Protein Multimerization , Protein Structure, Tertiary , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Static Electricity , Xenopus
10.
Neuropharmacology ; 75: 517-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23597508

ABSTRACT

Gap junction channels and hemichannels formed by the connexin family of proteins play important roles in many aspects of tissue homeostasis in the brain and in other organs. In addition, connexin channels have been proposed as pharmacological targets in the treatment of a number of human disorders. In this review, we describe the connexin-subtype selectivity and specificity of pharmacological agents that are commonly used to modulate connexin channels. We also highlight recent progress made toward identifying new agents for connexin channels that act in a selective and specific manner. Finally, we discuss developing insights into possible mechanisms by which these agents modulate connexin channel function. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Subject(s)
Connexins/metabolism , Gap Junctions/physiology , Ion Channels/physiology , Animals , Connexins/antagonists & inhibitors , Connexins/chemistry , Gap Junctions/drug effects , Humans , Ion Channel Gating/drug effects , Ion Channels/drug effects , Membrane Transport Modulators/pharmacology
11.
J Membr Biol ; 245(8): 453-63, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22825713

ABSTRACT

Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.


Subject(s)
Connexins/chemistry , Connexins/metabolism , Ion Channel Gating/physiology , Membrane Potentials/physiology , Oocytes/physiology , Animals , Cells, Cultured , Humans , Porosity , Structure-Activity Relationship , Xenopus laevis
12.
J Gen Physiol ; 139(1): 69-82, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22200948

ABSTRACT

The anti-malarial drug quinine and its quaternary derivative N-benzylquininium (BQ(+)) have been shown to inhibit gap junction (GJ) channels with specificity for Cx50 over its closely related homologue Cx46. Here, we examined the mechanism of BQ(+) action using undocked Cx46 and Cx50 hemichannels, which are more amenable to analyses at the single-channel level. We found that BQ(+) (300 µM-1 mM) robustly inhibited Cx50, but not Cx46, hemichannel currents, indicating that the Cx selectivity of BQ(+) is preserved in both hemichannel and GJ channel configurations. BQ(+) reduced Cx50 hemichannel open probability (P(o)) without appreciably altering unitary conductance of the fully open state and was effective when added from either extracellular or cytoplasmic sides. The reductions in P(o) were dependent on BQ(+) concentration with a Hill coefficient of 1.8, suggesting binding of at least two BQ(+) molecules. Inhibition by BQ(+) was voltage dependent, promoted by hyperpolarization from the extracellular side and conversely by depolarization from the cytoplasmic side. These results are consistent with binding of BQ(+) in the pore. Substitution of the N-terminal (NT) domain of Cx46 into Cx50 significantly impaired inhibition by BQ(+). The NT domain contributes to the formation of the wide cytoplasmic vestibule of the pore and, thus, may contribute to the binding of BQ(+). Single-channel analyses showed that BQ(+) induced transitions that did not resemble pore block, but rather transitions indistinguishable from the intrinsic gating events ascribed to loop gating, one of two mechanisms that gate Cx channels. Moreover, BQ(+) decreased mean open time and increased mean closed time, indicating that inhibition consists of an increase in hemichannel closing rate as well as a stabilization of the closed state. Collectively, these data suggest a mechanism of action for BQ(+) that involves modulation loop gating rather than channel block as a result of binding in the NT domain.


Subject(s)
Connexins/antagonists & inhibitors , Quinine/analogs & derivatives , Quinine/chemistry , Quinine/pharmacology , Animals , Connexins/chemistry , Connexins/genetics , Connexins/metabolism , Cytoplasm/metabolism , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Eye Proteins/metabolism , Ion Channel Gating , Mice , Oocytes/metabolism , Rats , Transfection , Xenopus laevis/metabolism
13.
J Gen Physiol ; 136(1): 47-62, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20584891

ABSTRACT

Mutations in GJB2, which encodes Cx26, are one of the most common causes of inherited deafness in humans. More than 100 mutations have been identified scattered throughout the Cx26 protein, most of which cause nonsyndromic sensorineural deafness. In a subset of mutations, deafness is accompanied by hyperkeratotic skin disorders, which are typically severe and sometimes fatal. Many of these syndromic deafness mutations localize to the amino-terminal and first extracellular loop (E1) domains. Here, we examined two such mutations, A40V and G45E, which are positioned near the TM1/E1 boundary and are associated with keratitis ichthyosis deafness (KID) syndrome. Both of these mutants have been reported to form hemichannels that open aberrantly, leading to "leaky" cell membranes. Here, we quantified the Ca(2+) sensitivities and examined the biophysical properties of these mutants at macroscopic and single-channel levels. We find that A40V hemichannels show significantly impaired regulation by extracellular Ca(2+), increasing the likelihood of aberrant hemichannel opening as previously suggested. However, G45E hemichannels show only modest impairment in regulation by Ca(2+) and instead exhibit a substantial increase in permeability to Ca(2+). Using cysteine substitution and examination of accessibility to thiol-modifying reagents, we demonstrate that G45, but not A40, is a pore-lining residue. Both mutants function as cell-cell channels. The data suggest that G45E and A40V are hemichannel gain-of-function mutants that produce similar phenotypes, but by different underlying mechanisms. A40V produces leaky hemichannels, whereas G45E provides a route for excessive entry of Ca(2+). These aberrant properties, alone or in combination, can severely compromise cell integrity and lead to increased cell death.


Subject(s)
Calcium/metabolism , Connexins/physiology , Deafness/genetics , Ion Channel Gating/physiology , Keratitis/genetics , Mutation, Missense/physiology , Amino Acid Substitution/physiology , Animals , Barium/pharmacology , Calcium/pharmacology , Cell Line, Tumor , Chelating Agents/pharmacology , Chloride Channels/drug effects , Chloride Channels/physiology , Connexin 26 , Connexins/drug effects , Cysteine/genetics , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Ethylenediamines/pharmacology , Gap Junctions/physiology , Humans , Ion Channel Gating/drug effects , Membrane Potentials/physiology , Mesylates/pharmacology , Mice , Oocytes , Permeability , RNA, Messenger/genetics , Streptomyces/genetics , Sulfhydryl Reagents/pharmacology , Syndrome , Transfection , Xenopus laevis
14.
Am J Physiol Cell Physiol ; 297(3): C665-78, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19587218

ABSTRACT

Numerous cell types express functional connexin (Cx) hemichannels (HCs), and membrane depolarization and/or exposure to a divalent cation-free bathing solution (DCFS) have been shown to promote HC opening. However, little is known about conditions that can promote HC opening in the absence of strong depolarization and when extracellular divalent cation concentrations remain at physiological levels. Here the effects of metabolic inhibition (MI), an in vitro model of ischemia, on the activity of mouse Cx32 HCs were examined. In HeLa cells stably transfected with mouse Cx32 (HeLa-Cx32), MI induced an increase in cellular permeability to ethidium (Etd). The increase in Etd uptake was directly related to an increase in levels of Cx32 HCs present at the cell surface. Moreover, MI increased membrane currents in HeLa-Cx32 cells. Underlying these currents were channels exhibiting a unitary conductance of approximately 90 pS, consistent with Cx32 HCs. These currents and Etd uptake were blocked by HC inhibitors. The increase in Cx32 HC activity was preceded by a rapid reduction in mitochondrial membrane potential and a rise in free intracellular Ca(2+) concentration ([Ca(2+)](i)). The increase in free [Ca(2+)](i) was prevented by HC blockade or exposure to extracellular DCFS and was virtually absent in parental HeLa cells. Moreover, inhibition of Cx32 HCs expressed by HeLa cells in low-confluence cultures drastically reduced cell death induced by oxygen-glucose deprivation, which is a more physiological model of ischemia-reperfusion. Thus HC blockade could reduce the increase in free [Ca(2+)](i) and cell death induced by ischemia-like conditions in cells expressing Cx32 HCs.


Subject(s)
Calcium/metabolism , Connexins/metabolism , Oxygen/metabolism , Animals , Connexins/genetics , HeLa Cells , Humans , Mice , Transfection , Gap Junction beta-1 Protein
15.
J Gen Physiol ; 133(6): 555-70, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19468074

ABSTRACT

The structure of the pore is critical to understanding the molecular mechanisms underlying selective permeation and voltage-dependent gating of channels formed by the connexin gene family. Here, we describe a portion of the pore structure of unapposed hemichannels formed by a Cx32 chimera, Cx32*Cx43E1, in which the first extracellular loop (E1) of Cx32 is replaced with the E1 of Cx43. Cysteine substitutions of two residues, V38 and G45, located in the vicinity of the border of the first transmembrane (TM) domain (TM1) and E1 are shown to react with the thiol modification reagent, MTSEA-biotin-X, when the channel resides in the open state. Cysteine substitutions of flanking residues A40 and A43 do not react with MTSEA-biotin-X when the channel resides in the open state, but they react with dibromobimane when the unapposed hemichannels are closed by the voltage-dependent "loop-gating" mechanism. Cysteine substitutions of residues V37 and A39 do not appear to be modified in either state. Furthermore, we demonstrate that A43C channels form a high affinity Cd2+ site that locks the channel in the loop-gated closed state. Biochemical assays demonstrate that A43C can also form disulfide bonds when oocytes are cultured under conditions that favor channel closure. A40C channels are also sensitive to micromolar Cd2+ concentrations when closed by loop gating, but with substantially lower affinity than A43C. We propose that the voltage-dependent loop-gating mechanism for Cx32*Cx43E1 unapposed hemichannels involves a conformational change in the TM1/E1 region that involves a rotation of TM1 and an inward tilt of either each of the six connexin subunits or TM1 domains.


Subject(s)
Connexins/chemistry , Connexins/metabolism , Ion Channel Gating , Animals , Cadmium/pharmacology , Connexin 43/chemistry , Connexin 43/metabolism , Connexins/isolation & purification , Cysteine/genetics , Cysteine/metabolism , Gap Junctions/chemistry , Gap Junctions/physiology , Membrane Potentials , Oocytes/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Xenopus/metabolism , Gap Junction beta-1 Protein
16.
J Biol Chem ; 284(7): 4484-93, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19074140

ABSTRACT

Unapposed connexin hemichannels exhibit robust closure in response to membrane hyperpolarization and extracellular calcium. This form of gating, termed "loop gating," is largely responsible for regulating hemichannel opening, thereby preventing cell damage through excessive flux of ions and metabolites. The molecular components and structural rearrangements underlying loop gating remain unknown. Here, using cysteine mutagenesis in Cx50, we demonstrate that residues at the TM1/E1 border undergo movement during loop gating. Replacement of Phe(43) in Cx50 with a cysteine resulted in small or no appreciable membrane currents. Bath application of dithiothreitol or TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine), reagents that exhibit strong transition metal chelating activity, led to robust currents indicating that the F43C substitution impaired hemichannel function, producing "lock-up" in a closed or poorly functional state due to formation of metal bridges. In support, Cd(2+) at submicromolar concentrations (50-100 nm) enhanced lock-up of F43C hemichannels. Moreover, lock-up occurred under conditions that favored closure, indicating that the sulfhydryl groups come close enough to each other or to other residues to coordinate metal ions with high affinity. In addition to F43C, metal binding was also found for G46C, and to a lesser extent, D51C substitutions, positions found to be pore-lining in the open state using the substituted-cysteine accessibility method, but not for A40C and A41C substitutions, which were not found to reside in the open pore. These results indicate that metal ions access the cysteine side chains through the open pore and that closure of the loop gate involves movement of the TM1/E1 region that results in local narrowing of the large aqueous connexin pore.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Connexins/metabolism , Eye Proteins/metabolism , Ion Channel Gating/physiology , Amino Acid Substitution , Animals , Cell Membrane/genetics , Connexins/genetics , Eye Proteins/genetics , Mutation, Missense , Protein Structure, Tertiary/physiology , Rats , Xenopus laevis
17.
J Gen Physiol ; 132(3): 315-27, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18695008

ABSTRACT

Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of voltage-dependent gating, termed V(j) and loop gating, that in Cx46 operate at opposite voltage polarities, positive and negative, respectively. Using recordings of single Cx46 hemichannels, we found both forms of gating persist in solutions containing no added Mg(2+) and EGTA to chelate Ca(2+). Although loop gating persists, it is significantly modulated by changing levels of extracellular divalent cations. When extracellular divalent cation concentrations are low, large hyperpolarizing voltages, exceeding -100 mV, could still drive Cx46 hemichannels toward closure. However, gating is characterized by continuous flickering of the unitary current interrupted by occasional, brief sojourns to a quiet closed state. Addition of extracellular divalent cations, in this case Mg(2+), results in long-lived residence in a quiet closed state, suggesting that hyperpolarization drives the hemichannel to close, perhaps by initiating movements in the extracellular loops, and that divalent cations stabilize the fully closed conformation. Using excised patches, we found that divalent cations are only effective from the extracellular side, indicative that the binding site is not cytoplasmic or in the pore, but rather extracellular. V(j) gating remains essentially unaffected by changing levels of extracellular divalent cations. Thus, we demonstrate that both forms of voltage dependence are intrinsic gating mechanisms in Cx46 hemichannels and that the action of external divalent cations is to selectively modulate loop gating.


Subject(s)
Connexins/physiology , Ion Channel Gating/physiology , Membrane Potentials/physiology , Oocytes/physiology , Animals , Cations , Cells, Cultured , Xenopus laevis
18.
J Physiol ; 586(10): 2445-61, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18372303

ABSTRACT

Previous studies have shown that charge substitutions in the amino terminus of a chimeric connexin, Cx32*43E1, which forms unapposed hemichannels in Xenopus oocytes, can result in a threefold difference in unitary conductance and alter the direction and amount of open channel current rectification. Here, we determine the charge selectivity of Cx32*43E1 unapposed hemichannels containing negative and/or positive charge substitutions at the 2nd, 5th and 8th positions in the N-terminus. Unlike Cx32 intercellular channels, which are weakly anion selective, the Cx32*43E1 unapposed hemichannel is moderately cation selective. Cation selectivity is maximal when the extracellular surface of the channel is exposed to low ionic strength solutions implicating a region of negative charge in the first extracellular loop of Cx43 (Cx43E1) in influencing charge selectivity analogous to that reported. Negative charge substitutions at the 2nd, 5th and 8th positions in the intracellular N-terminus substantially increase the unitary conductance and cation selectivity of the chimeric hemichannel. Positive charge substitutions at the 5th position decrease unitary conductance and produce a non-selective channel while the presence of a positive charge at the 5th position and negative charge at the 2nd results in a channel with conductance similar to the parental channel but with greater preference for cations. We demonstrate that a cysteine substitution of the 8th residue in the N-terminus can be modified by a methanthiosulphonate reagent (MTSEA-biotin-X) indicating that this residue lines the aqueous pore at the intracellular entrance of the channel. The results indicate that charge selectivity of the Cx32*43E1 hemichannel can be determined by the combined actions of charges dispersed over the permeation pathway rather than by a defined region that acts as a charge selectivity filter.


Subject(s)
Connexins/physiology , Signal Transduction/physiology , Amino Acid Sequence , Connexins/genetics , Electric Conductivity , Humans , Ion Channels/genetics , Ion Channels/physiology , Molecular Sequence Data , Permeability , Signal Transduction/genetics , Static Electricity , Gap Junction beta-1 Protein
19.
Am J Physiol Heart Circ Physiol ; 293(3): H1729-36, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17557922

ABSTRACT

We examined the permeabilities of homotypic and heterotypic gap junction (GJ) channels formed of rodent connexins (Cx) 30.2, 40, 43, and 45, which are expressed in the heart and other tissues, using fluorescent dyes differing in net charge and molecular mass. Combining fluorescent imaging and electrophysiological recordings in the same cell pairs, we evaluated the single-channel permeability (P(gamma)). All homotypic channels were permeable to the anionic monovalent dye Alexa Fluor-350 (AF(350)), but mCx30.2 channels exhibited a significantly lower P(gamma) than the others. The anionic divalent dye Lucifer yellow (LY) remained permeant in Cx40, Cx43, and Cx45 channels, but transfer through mCx30.2 channels was not detected. Heterotypic channels generally exhibited P(gamma) values that were intermediate to the corresponding homotypic channels. P(gamma) values of mCx30.2/Cx40, mCx30.2/Cx43, or mCx30.2/Cx45 heterotypic channels for AF(350) were similar and approximately twofold higher than P(gamma) values of mCx30.2 homotypic channels. Permeabilities for cationic dyes were assessed only qualitatively because of their binding to nucleic acids. All homotypic and heterotypic channel configurations were permeable to ethidium bromide and 4,6-diamidino-2-phenylindole. Permeability for propidium iodide was limited only for GJ channels that contain at least one mCx30.2 hemichannel. In summary, we have demonstrated that Cx40, Cx43, and Cx45 are permeant to all examined cationic and anionic dyes, whereas mCx30.2 demonstrates permeation restrictions for molecules with molecular mass over approximately 400 Da. The ratio of single-channel conductance to permeability for AF(350) was approximately 40- to 170-fold higher for mCx30.2 than for Cx40, Cx43, and Cx45, suggesting that mCx30.2 GJs are notably more adapted to perform electrical rather than metabolic cell-cell communication.


Subject(s)
Connexins/physiology , Gap Junctions/physiology , Animals , Cell Communication/physiology , Cell Membrane Permeability/physiology , Ethidium/metabolism , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Indoles/metabolism , Isoquinolines/metabolism , Membrane Potentials/physiology , Rodentia
20.
Cell ; 129(4): 787-99, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17512411

ABSTRACT

Gap junctions are widespread in immature neuronal circuits, but their functional significance is poorly understood. We show here that a transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of Caenorhabditis elegans. nsy-5 is required for the left and right AWC olfactory neurons to establish stochastic, asymmetric patterns of gene expression during embryogenesis. nsy-5-dependent gap junctions in the embryo transiently connect the AWC cell bodies with those of numerous other neurons. Both AWCs and several other classes of nsy-5-expressing neurons participate in signaling that coordinates left-right AWC asymmetry. The right AWC can respond to nsy-5 directly, but the left AWC requires nsy-5 function in multiple cells of the network. NSY-5 forms hemichannels and intercellular gap-junction channels in Xenopus oocytes, consistent with a combination of cell-intrinsic and network functions. These results provide insight into gap-junction activity in developing circuits.


Subject(s)
Body Patterning/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Connexins/metabolism , Nerve Net/embryology , Nervous System/embryology , Neurons/metabolism , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/isolation & purification , Calcium Signaling/physiology , Cell Communication/physiology , Cell Differentiation/physiology , Connexins/genetics , Connexins/isolation & purification , Functional Laterality/physiology , Gap Junctions/metabolism , Membrane Proteins/metabolism , Molecular Sequence Data , Nerve Net/metabolism , Nerve Net/ultrastructure , Nervous System/metabolism , Nervous System/ultrastructure , Neurons/ultrastructure , Olfactory Pathways/embryology , Olfactory Pathways/metabolism , Olfactory Pathways/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...