Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37913894

ABSTRACT

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smad3 Protein/metabolism
2.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884510

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.

3.
Visc Med ; 38(1): 11-19, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291698

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) remains a major challenge in cancer medicine and is characterized by a 5-year survival rate of <10%. Compelling evidence suggests that the devastating disease outcome of PDAC patients is linked to a high degree of intra- and interindividual tumor heterogeneity, which is predominantly installed at the level of gene transcription. The cellular and molecular complexities of the disease explain the poor efficacy of "one-size-fits-all" therapeutic approaches in PDAC treatment and strongly argue for pursuing tailored therapeutic strategies to tackle PDAC. In a highly dynamic manner, a network of transcription factors and epigenetic regulatory proteins temporally and spatially control the diverse transcriptomic states determining PDAC heterogeneity. Given the reversibility of epigenetic processes, pharmacological intervention with key epigenetic drivers of PDAC heterogeneity appeals as a promising concept to shift the transcriptomic phenotype of PDAC toward a less aggressive and more chemosensible state. Summary: In this review, we discuss the chances and pitfalls of epigenetic treatment strategies in overcoming and shifting molecular and cellular PDAC heterogeneities in order to combat PDAC. To this end, we utilized the keywords "pancreatic cancer," "heterogeneity," and "epigenetics" to search for relevant articles on the database PubMed and selected interventional studies enrolling PDAC patients as displayed in clinicaltrails.gov to generate a synopsis of clinical trials involving epigenetic targeting. Key Messages: Targeting epigenetic regulators in PDAC represents a promising concept to reprogram molecular and cellular tumor heterogeneities in the pancreas and hence to modulate the PDAC phenotype in favor of a less aggressive and more therapy susceptible disease course. However, we just start to understand the complex interactions of epigenetic regulators in controlling PDAC plasticity, and a clinical breakthrough utilizing epigenetic targeting in PDAC patients has not been achieved yet. Nevertheless, increasing translational efforts which consider the pleiotropic effects of targeting epigenetic regulation in different cellular compartments of the tumor and that focus on the utility and sequence of combinatory treatment approaches might pave the way toward novel epigenetic treatment strategies in PDAC therapy.

4.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943970

ABSTRACT

BACKGROUND: The Nuclear Factor of Activated T-cells 1 (NFATc1) transcription factor and the methyltransferase Enhancer of Zeste Homolog 2 (EZH2) significantly contribute to the aggressive phenotype of pancreatic ductal adenocarcinoma (PDAC). Herein, we aimed at dissecting the mechanistic background of their interplay in PDAC progression. METHODS: NFATc1 and EZH2 mRNA and protein expression and complex formation were determined in transgenic PDAC models and human PDAC specimens. NFATc1 binding on the Ezh2 gene and the consequences of perturbed NFATc1 expression on Ezh2 transcription were explored by Chromatin Immunoprecipitation (ChIP) and upon transgenic or siRNA-mediated interference with NFATc1 expression, respectively. Integrative analyses of RNA- and ChIP-seq data was performed to explore NFATc1-/EZH2-dependent gene signatures. RESULTS: NFATc1 targets the Ezh2 gene for transcriptional activation and biochemically interacts with the methyltransferase in murine and human PDAC. Surprisingly, our genome-wide binding and expression analyses do not link the protein complex to joint gene regulation. In contrast, our findings provide evidence for chromatin-independent functions of the NFATc1:EZH2 complex and reveal posttranslational EZH2 phosphorylation at serine 21 as a prerequisite for robust complex formation. CONCLUSION: Our findings disclose a previously unknown NFATc1-EZH2 axis operational in the pancreas and provide mechanistic insights into the conditions fostering NFATc1:EZH2 complex formation in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , NFATC Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/genetics , Chromatin/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Homeodomain Proteins/genetics , Humans , Mice , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/pathology , Protein Processing, Post-Translational/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Small Interfering/genetics , Trans-Activators/genetics
5.
Cancer Res ; 80(21): 4620-4632, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32907838

ABSTRACT

Recent studies have thoroughly described genome-wide expression patterns defining molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different prognostic and predictive implications. Although the reversible nature of key regulatory transcription circuits defining the two extreme PDAC subtype lineages "classical" and "basal-like" suggests that subtype states are not permanently encoded but underlie a certain degree of plasticity, pharmacologically actionable drivers of PDAC subtype identity remain elusive. Here, we characterized the mechanistic and functional implications of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in controlling PDAC plasticity, dedifferentiation, and molecular subtype identity. Utilization of transgenic PDAC models and human PDAC samples linked EZH2 activity to PDAC dedifferentiation and tumor progression. Combined RNA- and chromatin immunoprecipitation sequencing studies identified EZH2 as a pivotal suppressor of differentiation programs in PDAC and revealed EZH2-dependent transcriptional repression of the classical subtype defining transcription factor Gata6 as a mechanistic basis for EZH2-dependent PDAC progression. Importantly, genetic or pharmacologic depletion of EZH2 sufficiently increased GATA6 expression, thus inducing a gene signature shift in favor of a less aggressive and more therapy-susceptible, classical PDAC subtype state. Consistently, abrogation of GATA6 expression in EZH2-deficient PDAC cells counteracted the acquisition of classical gene signatures and rescued their invasive capacities, suggesting that GATA6 derepression is critical to overcome PDAC progression in the context of EZH2 inhibition. Together, our findings link the EZH2-GATA6 axis to PDAC subtype identity and uncover EZH2 inhibition as an appealing strategy to induce subtype-switching in favor of a less aggressive PDAC phenotype. SIGNIFICANCE: This study highlights the role of EZH2 in PDAC progression and molecular subtype identity and suggests EZH2 inhibition as a strategy to recalibrate GATA6 expression in favor of a less aggressive disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4620/F1.large.jpg.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic/physiology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/metabolism , Disease Progression , Humans , Mice , Mice, Transgenic , Pancreatic Neoplasms/metabolism
6.
Elife ; 62017 08 31.
Article in English | MEDLINE | ID: mdl-28857742

ABSTRACT

Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Proteolipids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Binding Sites , Biological Transport/physiology , Cardiolipins/chemistry , Cardiolipins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Membrane Potential, Mitochondrial/physiology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proteolipids/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...