Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sovrem Tekhnologii Med ; 13(3): 26-31, 2021.
Article in English | MEDLINE | ID: mdl-34603752

ABSTRACT

The aim of the study was to conduct a functional analysis of sex-specific age-related changes in DNA methylation. MATERIALS AND METHODS: The study used a GSE87571 methylation dataset obtained from the blood DNA of 729 individuals aged 14 to 94 using the Illumina Infinium HumanMethylation450K BeadChip (USA). Gene ontology analysis was performed for 3 groups of genes (females, males, and duplicates) using the PANTHER database. The DAVID platform was used to perform KEGG metabolic pathway analysis. RESULTS: The studies revealed unique for males and females changes in methylation of CpG sites, associated with certain metabolic processes. It was demonstrated that most of the CpG sites, for which methylation changes with age were revealed in both sexes, are associated with the genes responsible for the development and functioning of the nervous system. In males, unique age-related methylation changes affect CpG sites associated with changes in the immune system and lipid metabolism. In females, most CpGs are associated with changes involved in transcription and translation processes. Analysis of biological functions by KEGG revealed that a unique process associated with age-related changes in methylation of the glutamatergic system is typical for males. In females, unique biological processes with age-related changes include genes responsible for the development of diabetes and genes associated with cAMP signaling cascades (KEGG:04024). CONCLUSION: Our studies reveal fundamental features of sex-dependent changes in methylation of CpG sites with variance increasing, which may indicate differences in age-related changes.


Subject(s)
DNA Methylation , Adolescent , Adult , Aged , Aged, 80 and over , CpG Islands/genetics , DNA Methylation/genetics , Female , Humans , Male , Middle Aged , Young Adult
2.
Chaos ; 30(2): 023107, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32113249

ABSTRACT

Open quantum systems can exhibit complex states, for which classification and quantification are still not well resolved. The Kerr-nonlinear cavity, periodically modulated in time by coherent pumping of the intracavity photonic mode, is one of the examples. Unraveling the corresponding Markovian master equation into an ensemble of quantum trajectories and employing the recently proposed calculation of quantum Lyapunov exponents [I. I. Yusipov et al., Chaos 29, 063130 (2019)], we identify "chaotic" and "regular" regimes there. In particular, we show that chaotic regimes manifest an intermediate power-law asymptotics in the distribution of photon waiting times. This distribution can be retrieved by monitoring photon emission with a single-photon detector so that chaotic and regular states can be discriminated without disturbing the intracavity dynamics.

3.
Chaos ; 29(6): 063130, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31266336

ABSTRACT

Quantum systems, when interacting with their environments, may exhibit nonequilibrium states that are tempting to be interpreted as quantum analogs of chaotic attractors. However, different from the Hamiltonian case, the toolbox for quantifying dissipative quantum chaos remains limited. In particular, quantum generalizations of Lyapunov exponents, the main quantifiers of classical chaos, are established only within the framework of continuous measurements. We propose an alternative generalization based on the unraveling of quantum master equation into an ensemble of "quantum trajectories," by using the so-called Monte Carlo wave-function method. We illustrate the idea with a periodically modulated open quantum dimer and demonstrate that the transition to quantum chaos matches the period-doubling route to chaos in the corresponding mean-field system.

SELECTION OF CITATIONS
SEARCH DETAIL
...