Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Heliyon ; 10(6): e27934, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545168

ABSTRACT

Ilhéus virus (ILHV)(Flaviviridae:Orthoflavivirus) is an arthropod-borne virus (arbovirus) endemic to Central and South America and the Caribbean. First isolated in 1944, most of our knowledge derives from surveillance and seroprevalence studies. These efforts have detected ILHV in a broad range of mosquito and vertebrate species, including humans, but laboratory investigations of pathogenesis and vector competence have been lacking. Here, we develop an immune intact murine model with several ages and routes of administration. Our model closely recapitulates human neuroinvasive disease with ILHV strain- and mouse age-specific virulence, as well as a uniformly lethal Ifnar-/- A129 immunocompromised model. Replication kinetics in several vertebrate and invertebrate cell lines demonstrate that ILHV is capable of replicating to high titers in a wide variety of potential host and vector species. Lastly, vector competence studies provide strong evidence for efficient infection of and potential transmission by Aedes species mosquitoes, despite ILHV's phylogenetically clustering with Culex vectored flaviviruses, suggesting ILHV is poised for emergence in the neotropics.

2.
PLoS Negl Trop Dis ; 17(11): e0011710, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943879

ABSTRACT

BACKGROUND: The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Antibodies, Viral , Cross Reactions
3.
Diagnostics (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36980445

ABSTRACT

Dengue is a serious mosquito-transmitted disease caused by the dengue virus (DENV). Rapid and reliable diagnosis of DENV infection is urgently needed in dengue-endemic regions. We describe here the performance evaluation of the CE-marked VIDAS® dengue immunoassays developed for the automated detection of DENV NS1 antigen and anti-DENV IgM and IgG antibodies. A multicenter concordance study was conducted in 1296 patients from dengue-endemic regions in Asia, Latin America, and Africa. VIDAS® dengue results were compared to those of competitor enzyme-linked immunosorbent assays (ELISA). The VIDAS® dengue assays showed high precision (CV ≤ 10.7%) and limited cross-reactivity (≤15.4%) with other infections. VIDAS® DENGUE NS1 Ag showed high positive and negative percent agreement (92.8% PPA and 91.7% NPA) in acute patients within 0-5 days of symptom onset. VIDAS® Anti-DENGUE IgM and IgG showed a moderate-to-high concordance with ELISA (74.8% to 90.6%) in post-acute and recovery patients. PPA was further improved in combined VIDAS® NS1/IgM (96.4% in 0-5 days acute patients) and IgM/IgG (91.9% in post-acute patients) tests. Altogether, the VIDAS® dengue NS1, IgM, and IgG assays performed well, either alone or in combination, and should be suitable for the accurate diagnosis of DENV infection in dengue-endemic regions.

4.
BMC Biol ; 21(1): 36, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797789

ABSTRACT

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Subject(s)
COVID-19 , Testis , Viral Tropism , Animals , Humans , Male , Angiotensin II/metabolism , Chlorocebus aethiops , COVID-19/pathology , SARS-CoV-2 , Testis/immunology , Testis/virology , Vero Cells
5.
Vaccines (Basel) ; 10(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36298582

ABSTRACT

The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.

6.
Sci Rep ; 10(1): 11302, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647259

ABSTRACT

The Flaviviridae virus family was named after the Yellow-fever virus, and the latin term flavi means "of golden color". Dengue, caused by Dengue virus (DENV), is one of the most important infectious diseases worldwide. A sensitive and differential diagnosis is crucial for patient management, especially due to the occurrence of serological cross-reactivity to other co-circulating flaviviruses. This became particularly important with the emergence of Zika virus (ZIKV) in areas were DENV seroprevalence was already high. We developed a sensitive and specific diagnostic test based on gold nanorods (GNR) functionalized with DENV proteins as nanosensors. These were able to detect as little as one picogram of anti-DENV monoclonal antibodies and highly diluted DENV-positive human sera. The nanosensors could differentiate DENV-positive sera from other flavivirus-infected patients, including ZIKV, and were even able to distinguish which DENV serotype infected individual patients. Readouts are obtained in ELISA-plate spectrophotometers without the need of specific devices.


Subject(s)
Biosensing Techniques/methods , Dengue/diagnosis , Surface Plasmon Resonance/methods , Zika Virus Infection/diagnosis , Antibodies, Viral/blood , Brazil , Cohort Studies , Dengue/virology , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Seroepidemiologic Studies , Viral Envelope Proteins/immunology , Zika Virus Infection/virology
7.
Mater Sci Eng C Mater Biol Appl ; 107: 110203, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761220

ABSTRACT

Nanotechnology is one of the most promising tools for future diagnosis and therapy. Thus, we have produced gold nanoparticles coated with cetuximab at a dose-range from 5 µg up to 200 µg, and prolonged stable nanocomplexes were obtained. The nanocomplexes were characterized by UV-Vis, zeta potential, TEM, fluorometry, infrared regions, XPS and atomic absorption spectrometry. For biological characterization the A431 cell line was used. Cellular uptake, target affinity and cell death were assessed using ICP-OES, immunocytochemistry and flow cytometry, respectively. The immobilization of cetuximab on the AuNPs surfaces was confirmed. The nanocomplex with 24 months of manufacturing promoted efficient EGFR binding and induced tumour cell death due to apoptosis. Significant (p < 0.05) cell death was achieved using relatively low cetuximab concentration for AuNPs coating compared to the antibody alone. Therefore, our results provided robust physicochemical and biological characterization data corroborating the cetuximab-bioconjugate AuNPs as a feasible nanocomplex for biomedical applications.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cetuximab/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cetuximab/immunology , Cetuximab/pharmacology , Drug Carriers/chemistry , Drug Stability , ErbB Receptors/chemistry , ErbB Receptors/immunology , ErbB Receptors/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology
8.
Viruses ; 11(11)2019 11 19.
Article in English | MEDLINE | ID: mdl-31752352

ABSTRACT

Dengue is currently one of the most important arbovirus infections worldwide. Early diagnosis is important for disease outcome, particularly for those afflicted with the severe forms of infection. The goal of this work was to identify conserved and polymorphic linear B-cell Dengue virus (DENV) epitopes that could be used for diagnostic purposes. To this end, we aligned the predicted viral proteome of the four DENV serotype and performed in silico B-cell epitope mapping. We developed a script in Perl integrating alignment and prediction information to identify potential serotype-specific epitopes. We excluded epitopes that were similarly present in the yellow fever and zika viruses' proteomes. A total of 15 polymorphic and nine conserved peptides among DENV serotypes were selected. Peptides were spotted on cellulose membranes and tested against sera from rabbits that were monoinfected with each DENV serotype. Although serotype-specific peptides failed to recognize any sera, three conserved peptides were recognized by all anti-dengue sera and were included on an ELISA test employing a well-characterized human sera bank. Of the three peptides, one was able to efficiently identify sera from all four DENV serotypes and to discriminate them from Zika virus positive sera.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Epitopes, B-Lymphocyte/immunology , Host-Pathogen Interactions/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Peptides/chemistry , Peptides/immunology , Reproducibility of Results
9.
J Nanobiotechnology ; 15(1): 26, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28376812

ABSTRACT

BACKGROUND: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS: Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS: Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.


Subject(s)
Antibody Formation , Dengue Vaccines/immunology , Dengue/prevention & control , Nanotubes, Carbon/chemistry , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , Cell Proliferation , Cytokines/immunology , Dengue/immunology , Dengue Vaccines/therapeutic use , Dengue Virus/immunology , Female , Immunity, Cellular , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanoconjugates/chemistry , Nanomedicine , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Spectrum Analysis, Raman , Spleen/cytology , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
11.
J Nanobiotechnology ; 14(1): 61, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27465605

ABSTRACT

BACKGROUND: In recent times, studies have demonstrated that carbon nanotubes are good candidates for use as vehicles for transfection of exogenous material into the cells. However, there are few studies evaluating the behavior of carbon nanotubes as DNA vectors and few of these studies have used multi-walled carbon nanotubes (MWCNTs) or carboxylated MWCNTs. Thus, this study aims to assess the MWCNTs' (carboxylated or not) efficiency in the increase in expression of the tetravalent vaccine candidate (TVC) plasmid vector for dengue virus in vitro using Vero cells, and in vivo, through the intramuscular route, to evaluate the immunological response profile. RESULTS: Multi-walled carbon nanotubes internalized by Vero cells, have been found in the cytoplasm and nucleus associated with the plasmid. However, it was not efficient to increase the messenger ribonucleic acid (mRNA) compared to the pure vaccine candidate associated with Lipofectamine(®) 2000. The in vivo experiments showed that the use of intramuscular injection of the TVC in combination with MWCNTs reduced the immune response compared to pure TVC, in a general way, although an increase was observed in the population of the antibody-producing B cells, as compared to pure TVC. CONCLUSIONS: The results confirm the data found by other authors, which demonstrate the ability of nanotubes to penetrate target cells and reach both the cytoplasm and the cell nucleus. The cytotoxicity values are also in accordance with the literature, which range from 5 to 20 µg/mL. This has been found to be 10 µg/mL in this study. Although the expression levels are higher in cells that receive the pure TVC transfected using Lipofectamine(®) 2000, the nanotubes show an increase in B-cells producing antibodies.


Subject(s)
Antibodies, Viral/biosynthesis , B-Lymphocytes/drug effects , Dengue Vaccines/administration & dosage , Dengue/prevention & control , Nanotubes, Carbon/chemistry , Transfection/methods , Vaccination , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Chlorocebus aethiops , Dengue/immunology , Dengue/virology , Dengue Vaccines/immunology , Dengue Virus/drug effects , Dengue Virus/immunology , Disease Models, Animal , Female , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Lipids/pharmacology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Plasmids/chemistry , Plasmids/metabolism , Vero Cells
12.
Plant Cell Rep ; 34(6): 919-28, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25689887

ABSTRACT

KEY MESSAGE: Expression of dengue-2 virus NS1 protein in Nicotiana tabacum plants for development of dengue immunodiagnostic kits. Dengue is one of the most important diseases caused by arboviruses in the world. A significant increase in its geographical distribution has been noticed over the last 20 years, with continuous transmission of several serotypes and emergence of the hemorrhagic fever in areas where the disease was previously not prevalent. Although the methodological processes for dengue diagnosis are in deep development and improvement, a limitation for the realization of dengue diagnostic tests is the difficulty of large-scale production of the antigen to be used in diagnostic tests. Due to this demand, the purpose of this study was to obtain the non-structural protein 1 (NS1) from dengue-2 serotype by heterologous expression in Nicotiana tabacum (Havana). After confirmation of the NS1 protein gene integration in the plant genome, the heterologous protein was characterized using SDS-PAGE and immunoblotting. In an immunoenzymatic test, the recombinant NS1 protein presents an antigen potential for development of dengue immunodiagnostic kits.


Subject(s)
Dengue/diagnosis , Nicotiana/genetics , Recombinant Proteins/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Aedes/virology , Agrobacterium tumefaciens/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Case-Control Studies , Dengue Virus/immunology , Dengue Virus/pathogenicity , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Plants, Genetically Modified , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Nicotiana/metabolism , Viral Nonstructural Proteins/metabolism
13.
Vaccine ; 32(19): 2160-6, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24606864

ABSTRACT

Bovine anaplasmosis is a disease caused by the intraerythrocytic rickettsia Anaplasma marginale. Surface proteins (MSPs) of A. marginale are important in the interaction of the pathogen with the host and constitute potential vaccine targets against this pathogen. Currently, there is no commercial inactivated vaccine against bovine anaplasmosis that can generate a protective immune response that effectively prevents the development of clinical disease. The objective of this study was to evaluate the humoral and cellular immune responses of BALB/c mice immunized with the recombinant fragment of rMSP1a from A. marginale using carbon nanotubes as a carrier molecule. The fragment of rMSP1a comprising the N-terminal region of the protein was expressed in Escherichia coli BL21, purified by nickel affinity chromatography and covalently linked to multiwalled carbon nanotubes (MWNTs). After this functionalization, thirty BALB/c mice were divided into five groups, G1 (rMSP1a), G2 (MWNT+rMSP1a), G3 (MWNT), G4 (adjuvant) and G5 (unimmunized). The mice were immunized subcutaneously at days 0, 21 and 42. Blood samples were collected on day 11 after immunization. The spleens were collected, and the splenocytes were cultured for cell proliferation assays and cell immunophenotyping. Mice immunized with rMSP1a (G1 and G2) produced high levels of anti-rMSP1a IgG, demonstrating that the functionalization to carbon nanotubes did not interfere with protein immunogenicity. Immunization with MWNT+rMSP1a significantly induced higher percentages of CD4(+)CD44(+) and CD4(+)CD62L(+) lymphocytes, high levels of TNF-α, and a higher proliferative rate of splenocytes compared to mice immunized with rMSP1a alone (G1 group). Therefore, additional experiments using cattle should be performed to determine the efficacy, safety, immunogenicity and protection induced by rMSP1a associated with MWNT.


Subject(s)
Anaplasmosis/prevention & control , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Nanotubes, Carbon/chemistry , Anaplasma marginale , Animals , Antibodies, Bacterial/blood , Bacterial Vaccines/chemistry , Cells, Cultured , Cytokines/immunology , Drug Carriers/chemistry , Epitopes/immunology , Female , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Recombinant Proteins/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...