Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; : 107952, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906243

ABSTRACT

The ability to learning and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined in male mice whether early life stress (ELS) alters memory and brain activation patterns, by studying the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also disrupted the colocalization of c-Fos+ cells with (training activated) Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. Altered correlated activity during training and changes in IEG expression over time were also found in ELS animals. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of early-life stress on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.

2.
Sci Adv ; 9(41): eade3300, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824607

ABSTRACT

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.


Subject(s)
Neurons , Pyramidal Cells , Humans , Mice , Animals , Neurons/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Membrane Potentials/physiology , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...