Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138310

ABSTRACT

Traditional instrumented seat posts determine context-induced seat loads to analyze damping properties. This paper presents an enhanced instrumented seat post able to measure all six load components to resolve user-induced seat loads. User-induced cycling loads consist of all loads the user applies to the bicycle during cycling and is measured at the steer stem, the seat post, and the pedals. Seat loads are essentially uncharted territory, as most studies only address pedal loading to study cycling technique. In this paper, a conventional seat post is redesigned by equipping it with a u-shaped component and strain gauges. The instrumented seat post is straightforward thanks to (i) the simple design, (ii) the gravitational calibration method, and (iii) the permitted clearance on the strain gauge alignment. Analyzing mean seat loading in function of the pedal cycle can provide extra insights into cycling technique and the related injuries. It is an interesting addition to the universally adopted method of utilizing singular pedal loads.

2.
Sensors (Basel) ; 20(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197330

ABSTRACT

Traditional motion capture systems are the current standard in the assessment of knee joint kinematics. These systems are, however, very costly, complex to handle, and, in some conditions, fail to estimate the varus/valgus and internal/external rotation accurately due to the camera setup. This paper presents a novel and comprehensive method to infer the full relative motion of the knee joint, including the flexion/extension, varus/valgus, and internal/external rotation, using only low cost inertial measurement units (IMU) connected to the upper and lower leg. Furthermore, sensors can be placed arbitrarily and only require a short calibration, making it an easy-to-use and portable clinical analysis tool. The presented method yields both adequate results and displays the uncertainty band on those results to the user. The proposed method is based on an fixed interval smoother relying on a simple dynamic model of the legs and judicially chosen constraints to estimate the rigid body motion of the leg segments in a world reference frame. In this pilot study, benchmarking of the method on a calibrated robotic manipulator, serving as leg analogue, and comparison with camera-based techniques confirm the method's accurateness as an easy-to-implement, low-cost clinical tool.


Subject(s)
Biomechanical Phenomena/physiology , Biosensing Techniques , Diagnostic Techniques and Procedures , Knee Joint/physiology , Range of Motion, Articular/physiology , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Costs and Cost Analysis , Diagnostic Techniques and Procedures/economics , Diagnostic Techniques and Procedures/instrumentation , Humans , Models, Theoretical , Statistics as Topic/instrumentation , Statistics as Topic/methods , Weights and Measures/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...