Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(50): 14425-14436, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29148796

ABSTRACT

Cationic and anionic block copolymer worms are prepared by polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion copolymerization of 2-hydroxypropyl methacrylate and glycidyl methacrylate (GlyMA), using a binary mixture of a nonionic poly(ethylene oxide) macromolecular RAFT agent and either a cationic poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) or an anionic poly(potassium 3-sulfopropyl methacrylate) macromolecular RAFT agent. In each case, covalent stabilization of the worm cores was achieved via reaction of the epoxide groups on the GlyMA repeat units with 3-mercaptopropyltriethoxysilane. Aqueous electrophoresis studies indicated a pH-independent mean zeta potential of +40 mV and -39 mV for the cationic and anionic copolymer worms, respectively. These worms are expected to mimic the rigid rod behavior of water-soluble polyelectrolyte chains in the absence of added salt. The kinetics of adsorption of the cationic worms onto a planar anionic silicon wafer was examined at pH 5 and was found to be extremely fast at 1.0 w/w % copolymer concentration in the absence of added salt. Scanning electron microscopy (SEM) analysis indicated that a relatively constant worm surface coverage of 16% was achieved at 20 °C for adsorption times ranging from just 2 s up to 2 min. Furthermore, the successive layer-by-layer deposition of cationic and anionic copolymer worms onto planar surfaces was investigated using SEM, ellipsometry, and surface zeta potential measurements. These techniques confirmed that the deposition of oppositely charged worms resulted in a monotonic increase in the mean layer thickness, with a concomitant surface charge reversal occurring on addition of each new worm layer. Unexpectedly, two distinct linear regimes were observed when plotting the mean layer thickness against the total number of adsorbed worm layers, with a steeper gradient (corresponding to thicker layers) being observed after the deposition of six worm layers.

2.
Chem Sci ; 7(12): 6894-6904, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-28567260

ABSTRACT

A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, Mn = 4400 g mol-1; Mw/Mn = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, Mn = 31 800 g mol-1, Mw/Mn = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 µm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25-28 µm diameter when using the former worms but only 3-5 µm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the much more delicate linear worms underwent fragmentation under the same conditions. Similar results were obtained with 4 µm silica particles.

3.
J Colloid Interface Sci ; 460: 71-80, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26319322

ABSTRACT

A facile synthesis route to novel inorganic/organic hybrid microcapsules is reported. Laponite nanoparticles are surface-modified via electrostatic adsorption of Magnafloc, an amine-based polyelectrolyte allowing the formation of stable oil-in-water Pickering emulsions. Hybrid microcapsules can be subsequently prepared by coating these Pickering emulsion precursors with dense melamine formaldehyde (MF) shells. Employing a water-soluble polymeric stabiliser, poly(acrylamide-co-sodium acrylate) leads to stable hybrid microcapsules that survive an alcohol challenge and the ultrahigh vacuum conditions required for SEM studies. Unfortunately, the presence of this copolymer also leads to secondary nucleation of excess MF latex particles in the aqueous continuous phase. However, since the Magnafloc is utilised at submonolayer coverage when coating the Laponite particles, the nascent cationic MF nanoparticles can deposit onto anionic surface sites on the Laponite, which removes the requirement for the poly(acrylamide-co-sodium acrylate) component. Following this electrostatic adsorption, the secondary amine groups on the Magnafloc chains can react with the MF, leading to highly robust cross-linked MF shells. The absence of the copolymer leads to minimal secondary nucleation of MF latex particles, ensuring more efficient deposition at the surface of the emulsion droplets. However, the MF shells appear to become more brittle, as SEM studies reveal cracking on addition of ethanol.

4.
ACS Appl Mater Interfaces ; 6(23): 20919-27, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25380488

ABSTRACT

A facile route for the preparation of water-in-oil-in-water (w/o/w) double emulsions is described for three model oils, namely, n-dodecane, isopropyl myristate, and isononyl isononanoate, using fumed silica particles coated with poly(ethylene imine) (PEI). The surface wettability of such hybrid PEI/silica particles can be systematically adjusted by (i) increasing the adsorbed amount of PEI and (ii) addition of 1-undecanal to the oil phase prior to homogenization. In the absence of this long-chain aldehyde, PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) produce o/w Pickering emulsions in all cases. In the presence of 1-undecanal, this reagent reacts with the primary and secondary amine groups on the PEI chains via Schiff base chemistry, which can render the PEI/silica hybrid particles sufficiently hydrophobic to stabilize w/o Pickering emulsions at 20 °C. Gas chromatography, (1)H NMR and X-ray photoelectron spectroscopy provide compelling experimental evidence for this in situ surface reaction, while a significant increase in the water contact angle indicates markedly greater hydrophobic character for the PEI/silica hybrid particles. However, when PEI/silica hybrid particles are prepared using a relatively low adsorbed amount of PEI (PEI/silica mass ratio = 0.075) only o/w Pickering emulsions are obtained, since the extent of surface modification achieved using this Schiff base chemistry is insufficient. Fluorescence microscopy and laser diffraction studies confirm that highly stable w/o/w double emulsions can be achieved for all three model oils. This is achieved by first homogenizing the relatively hydrophobic PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) with an oil containing 3% 1-undecanal to form an initial w/o emulsion, followed by further homogenization using an aqueous dispersion of relatively hydrophilic PEI/silica particles (PEI/silica mass ratio = 0.075). Dye release from the internal aqueous cores into the aqueous continuous phase was monitored by visible absorption spectroscopy. These studies indicate immediate loss of 12-18% dye during the high speed homogenization that is required for double emulsion formation, but no further dye release is observed at 20 °C for at least 15 days thereafter.

5.
Langmuir ; 30(10): 2703-11, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24559174

ABSTRACT

Poly(ethylene imine) (PEI) has been adsorbed onto the surface of fumed silica particles at pH 10 in order to produce an effective "hybrid" Pickering emulsifier. Systematically increasing the PEI/silica mass ratio at a fixed silica concentration of 1.0% w/w modifies the silica particle surface and hence allows the formation of oil-in-water (o/w) Pickering emulsions prepared via homogenization of an aldehyde-rich multi-component fragrance oil (at 12,000 rpm for 2 min at 20 °C). Further increasing the PEI/silica mass ratio leads to phase inversion, producing water-in-oil (w/o) Pickering emulsions. Thus this approach allows formation of stable water-in-oil-in-water (w/o/w) double emulsions using two batches of hydrophilic and hydrophobic PEI/silica hybrid particles that differ only in their PEI/silica mass ratios prior to homogenization. Stable w/o/w double emulsions can be prepared with oil volume fractions ranging from 5 to 42%. Moreover, controlling the volume fraction of the w/o Pickering emulsion homogenized in the presence of an aqueous dispersion of the hydrophilic PEI/silica particles allows the mean diameter of the resulting oil droplets to be conveniently controlled between 20 and 160 µm. Fluorescence microscopy studies confirm that controlling the mean diameter of these oil droplets allows encapsulation of either single or multiple droplets within them. Although these double emulsions do not require cross-linking at either interface to withstand an alcohol challenge, epoxy-amine cross-linking between the physically-adsorbed PEI chains and either an oil-soluble or a water-soluble bisepoxy-based polymeric cross-linker can be achieved to produce novel colloidosomes-in-colloidosomes, which may offer payload retention benefits over conventional colloidosomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...