Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 860: 160402, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36427722

ABSTRACT

We studied how changing human impacts affected phytoplankton dynamics in the freshwater and brackish tidal reaches of the Zeeschelde estuary (Belgium) between 2002 and 2018. Until the early 2000s, the Zeeschelde was heavily polluted due to high wastewater discharges. By 2008, water quality had improved, resulting in lower nutrient concentrations and higher oxygen levels. Since 2009, however, increased dredging activities resulted in altered hydrodynamics and increased suspended sediment concentration. The combined effects of these environmental changes were reflected in three marked transitions in phytoplankton community composition. Assemblages were dominated by Thalassiosirales and green algae (especially Scenedesmaceae) until 2003. The period 2003-2011 was characterized by the wax and wane of the centric diatoms Actinocyclus and Aulacoseira, while in the period 2012-2018 Thalassiosirales and Cyanobacteria became dominant, the latter mainly imported from the tributaries. Phytoplankton biomass increased sharply in 2003, after which there was a gradual decline until 2018. By 2018, the timing of the growing season had advanced with about one month compared to the start of the study, probably as a consequence of climate warming and intensified zooplankton grazing pressure. Our study shows that de-eutrophication (during the 2000s) and morphological interventions in the estuary (in the 2010s) were dominant drivers of phytoplankton dynamics but that the main shifts in community composition were triggered by extreme weather events, suggesting significant resistance of autochthonous communities to gradual changes in the environment.


Subject(s)
Diatoms , Extreme Weather , Humans , Phytoplankton , Estuaries , Belgium , Hydrodynamics , Biomass , Eutrophication
2.
Mol Ecol ; 24(17): 4433-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26227512

ABSTRACT

Given their large population sizes and presumed high dispersal capacity, protists are expected to exhibit homogeneous population structure over large spatial scales. On the other hand, the fragmented and short-lived nature of the lentic freshwater habitats that many protists inhabit promotes strong population differentiation. We used microsatellites in two benthic freshwater diatoms, Eunotia bilunaris 'robust' and Sellaphora capitata, sampled from within a pond and connected ponds, through isolated ponds from the same region to western Europe to determine the spatial scale at which differentiation appears. Because periods of low genotypic diversity contribute to population differentiation, we also assessed genotypic diversity. While genotypic diversity was very high to maximal in most samples of both species, some had a markedly lower diversity, with up to half (Eunotia) and over 90% (Sellaphora) of the strains having the same multilocus genotype. Population differentiation showed an isolation-by-distance pattern with very low standardized FST values between samples from the same or connected ponds but high values between isolated ponds, even when situated in the same region. Partial rbcL sequences in Eunotia were consistent with this pattern as isolated ponds in the same region could differ widely in haplotype composition. Populations identified by Structure corresponded to the source ponds, confirming that 'pond' is the main factor structuring these populations. We conclude that freshwater benthic diatom populations are highly fragmented on a regional scale, reflecting either less dispersal than is often assumed or reduced establishment success of immigrants, so that dispersal does not translate into gene flow.


Subject(s)
Diatoms/genetics , Genetic Variation , Genetics, Population , Genotype , Diatoms/classification , Europe , Fresh Water , Haplotypes , Microsatellite Repeats , Molecular Sequence Data , Sequence Analysis, DNA
3.
Appl Environ Microbiol ; 77(5): 1763-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21239551

ABSTRACT

The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles.


Subject(s)
Alveolata/isolation & purification , Environmental Microbiology , Housing, Animal , Poultry/parasitology , Animals , DNA Fingerprinting , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Electrophoresis, Polyacrylamide Gel , Microbial Viability , Nucleic Acid Denaturation , Time Factors
4.
Food Microbiol ; 25(7): 929-35, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18721684

ABSTRACT

PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses.


Subject(s)
Cheese/microbiology , Food Microbiology , Lactobacillus/classification , Phylogeny , Animals , Belgium , Biodiversity , Cheese/standards , Colony Count, Microbial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Discriminant Analysis , Electrophoresis, Agar Gel/methods , Humans , Milk/microbiology , Polymerase Chain Reaction/methods , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...