Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Water Res ; 258: 121687, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754295

ABSTRACT

This retrospective article reflects on the complex and evolving relationship between humans and nitrogen over several decades. Raised on a Flemish farm, the author's early experiences with nitrogen in agriculture - both its benefits and dangers - laid the foundation for a lifelong interest in this element. The article traverses a broad range of topics related to nitrogen, highlighting its critical role in various historical, agricultural, environmental, and industrial contexts. The narrative begins with a historical overview of nitrogen's role in agriculture and warfare. The development of industrial processes like the Haber and Ostwald methods transformed nitrogen into a key ingredient for both fertilizers and explosives. The dual nature of nitrogen - as a life-giver in agriculture and a destructive component in warfare and also in biodiversity - is an important theme. The article delves into the environmental impacts of nitrogen, particularly in the context of modern agriculture and industrialization. Issues like fertilization, water contamination, and the challenges of managing nitrogenous waste highlight the complex interplay between human activities and environmental health. Technological advancements are explored, including the development of bioaugmentation methods and the potential of genetic engineering in optimizing nitrogen fixation. Throughout the narrative, personal anecdotes are weaved with scientific information, offering a unique perspective on the historical and contemporary challenges of managing nitrogen. The discussion extends to the broader implications of nitrogen management in the context of sustainability, climate change, and global food security and its overall regulatory space. All these considerations call for a re-evaluation of our relationship with nitrogen, advocating for innovative solutions and systemic thinking to address the multifaceted challenges posed by this essential, yet often problematic element.


Subject(s)
Agriculture , Nitrogen , Humans , Fertilizers , History, 20th Century
2.
Water Res ; 149: 21-34, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30445393

ABSTRACT

Wastewater treatment plants (WWTPs) have been identified as confirmed but until today underestimated sources of Legionella, playing an important role in local and community cases and outbreaks of Legionnaires' disease. In general, aerobic biological systems provide an optimum environment for the growth of Legionella due to high organic nitrogen and oxygen concentrations, ideal temperatures and the presence of protozoa. However, few studies have investigated the occurrence of Legionella in WWTPs, and many questions in regards to the interacting factors that promote the proliferation and persistence of Legionella in these treatment systems are still unanswered. This critical review summarizes the current knowledge about Legionella in municipal and industrial WWTPs, the conditions that might support their growth, as well as control strategies that have been applied. Furthermore, an overview of current quantification methods, guidelines and health risks associated with Legionella in reclaimed wastewater is also discussed in depth. A better understanding of the conditions promoting the occurrence of Legionella in WWTPs will contribute to the development of improved wastewater treatment technologies and/or innovative mitigation approaches to minimize future Legionella outbreaks.


Subject(s)
Legionella , Legionnaires' Disease , Humans , Temperature , Wastewater
3.
Water Sci Technol ; 74(4): 816-23, 2016.
Article in English | MEDLINE | ID: mdl-27533856

ABSTRACT

A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection.


Subject(s)
Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Legionella/drug effects , Oxides/pharmacology , Ozone/pharmacology , Wastewater/microbiology , Disinfectants/chemistry , Germany , Legionella/physiology , Sewage/microbiology , Water Microbiology
4.
Water Res ; 65: 203-12, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25117937

ABSTRACT

Filamentous bacteria such as Microthrix parvicella can cause serious foaming and floating sludge problems in anaerobic digesters fed with sewage sludge. The sewage sludge and oil co-fermenting laboratory-scale biogas digesters in this study were fed with substrates from a foaming-prone full-scale biogas plant containing the filamentous bacterium M. parvicella. At 37 °C, in both pneumatically mixed digesters a highly viscous and approximately 3 cm thick floating sludge was observed. A gradual increase of the temperature from 37 °C to 56 °C led to a significant decrease in the floating sludge thickness, which correlated with a strong decrease in the abundance of M. parvicella in the digestate. Furthermore, the stepwise temperature increase allowed for an adaption of the microbial community and prevented process failure. The study indicates that already a moderate temperature increase from 37 °C to 41 °C might help to control the M. parvicella abundance in full-scale biogas plants.


Subject(s)
Actinobacteria/growth & development , Sewage/microbiology , Biofuels , Bioreactors , Temperature , Waste Disposal, Fluid/methods
5.
Bioresour Technol ; 156: 314-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24525216

ABSTRACT

A biosorptive activated sludge (BAS) was operated at lab-scale with diluted and concentrated municipal wastewater to study the efficiency of removal of organics (particulate and soluble COD) and recovery of nutrients (TKN, ammonia, phosphorus). The system performed significantly better with concentrated wastewater, where COD removal efficiency was 80% at organic loading rates between 10 and 20kg m(-3)d(-1). Supplementation of ferrous iron at 20mg L(-1), significantly improved both the removal of particulate, soluble COD and phosphorus. The effluent from the BAS was further treated using an ultrafiltration process with backwashing. The average permeate flux (at constant TMP=0.3bar) increased from 23 to 28 and 34L m(-2)h(-1) when raw sewage, BAS without iron, and iron respectively were tested. The proposed technology is compact, efficient and suitable for decentralized water reuse, while the capital and operational expenses were calculated as 0.64 and 0.43€ m(-3), respectively.


Subject(s)
Recycling , Sewage/chemistry , Ultrafiltration/methods , Wastewater/chemistry , Adsorption , Ammonia/analysis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Costs and Cost Analysis , Membranes, Artificial , Permeability , Phosphorus/analysis , Solubility , Ultrafiltration/economics , Waste Disposal, Fluid , Wastewater/economics
6.
Bioresour Technol ; 155: 352-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24463414

ABSTRACT

A highly-loaded constructed wetland (up to 44±21gCODm(-2)d(-1)) was connected to a bioelectrochemical system (BES) to produce hydrogen peroxide for disinfection purposes. The anode delivered a current from the wetland effluent up to 3.5Am(-2) (maximum 62% anodic efficiency) but was limited in the supply of organic carbon. Hydrogen peroxide could be produced in situ in wetland effluent. Production rates were tested at various current densities with a maximum rate of 2.7gmelectrode(-2)h(-1) (4h at 10Am(-2), 41% cathodic efficiency). Little difference was observed between production rate in wetland effluent or a 0.3% NaCl solution. The resulting hydrogen peroxide (0.1%) was used to disinfect wetland effluent successfully (<75CFUml(-1) after 1h contact time). The combination of wetland water treatment with peroxide production in a BES thus enables generating higher water qualities, including disinfected water, without external input of chemicals.


Subject(s)
Hydrogen Peroxide/chemical synthesis , Wastewater/chemistry , Water Purification/methods , Wetlands , Disinfection/methods , Electrochemistry/methods , Filtration/methods , Flow Cytometry
7.
Bioresour Technol ; 153: 1-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24321688

ABSTRACT

The microbial community composition in a full-scale biogas plant fed with sewage sludge and fat, oil and grease (FOG) was investigated over a 15-month period, including two foam formation events. Addition of FOG as a substrate in the biogas plant together with high abundances of Microthrix parvicella were found to promote foam formation in the downstream digester of a cascade of two biogas digesters. Genetic fingerprinting and quantitative PCR (qPCR) indicated a higher abundance of M. parvicella in the digester, when the digestion process was accompanied by excessive foaming relative to the reference digesters without disturbance. The creation of foam depended on the introduced proportion of FOG and the abundance of M. parvicella. Furthermore, shifts in the abundance of M. parvicella in the biogas plant were observed within the 15-month monitoring period corresponding to its seasonal abundance in the sludge of the wastewater treatment plant (WWTP).


Subject(s)
Biofouling , Biofuels/microbiology , Bioreactors/microbiology , Biotechnology/instrumentation , Biotechnology/methods , Oils/pharmacology , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/growth & development , Anaerobiosis/drug effects , Biodegradation, Environmental/drug effects , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Genes, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
9.
Water Sci Technol ; 67(7): 1425-33, 2013.
Article in English | MEDLINE | ID: mdl-23552229

ABSTRACT

Anaerobic digestion yields effluents rich in ammonium and phosphate and poor in biodegradable organic carbon, thereby making them less suitable for conventional biological nitrogen and phosphorus removal. In addition, the demand for fertilizers is increasing, energy prices are rising and global phosphate reserves are declining. This requires both changes in wastewater treatment technologies and implementation of new processes. In this contribution a description is given of the combination of a ureolytic phosphate precipitation (UPP) and an autotrophic nitrogen removal (ANR) process on the anaerobic effluent of a potato processing company. The results obtained show that it is possible to recover phosphate as struvite and to remove the nitrogen with the ANR process. The ANR process was performed in either one or two reactors (partial nitritation + Anammox). The one-reactor configuration operated stably when the dissolved oxygen was kept between 0.1 and 0.35 mg L(-1). The best results for the two-reactor system were obtained when part of the effluent of the UPP was fully nitrified in a nitritation reactor and mixed in a 3:5 volumetric ratio with untreated ammonium-containing effluent. A phosphate and nitrogen removal efficiency of respectively 83 ± 1% and of 86 ± 7% was observed during this experiment.


Subject(s)
Bioreactors , Phosphates/isolation & purification , Quaternary Ammonium Compounds/isolation & purification , Wastewater/chemistry , Autotrophic Processes , Industrial Waste , Solanum tuberosum , Waste Disposal, Fluid
10.
Water Sci Technol ; 67(6): 1188-93, 2013.
Article in English | MEDLINE | ID: mdl-23508141

ABSTRACT

Pre-concentration of municipal wastewater by chemically enhanced primary treatment (CEPT) was studied under controlled laboratory conditions. Both iron and aluminium-based coagulants were examined at gradually increasing concentrations (0.23, 0.35, 0.70 and 1.05 mmol/L). The CEPT sludge generated from different coagulation experiments was digested in batch anaerobic reactors, while the supernatant was tested in a dead-end microfiltration setup. The results of the study show that biogas yield was dramatically decreased (from 0.40 to 0.10 m(3)/kg chemical oxygen demand of influent) with increasing coagulant dose. In contrast, supernatant filterability was improved. Based on the laboratory results, a conceptual design was produced for a community of 2000 inhabitant equivalents (IE), using CEPT technology (at low coagulant dose) with anaerobic digestion of the concentrates. According to this, the capital and operational costs were 0.11 and 0.09 €/m(3), respectively. The biogas generated is used for digester heating and the overall process is energy self-sufficient. At a small-scale and in private applications, CEPT technology is preferably operated at higher coagulant dose, followed by membrane filtration for water reuse. Accordingly, sewage purification and reuse is possible without implementing aerobic biological processes.


Subject(s)
Recycling , Sewage , Waste Management
11.
Bioresour Technol ; 123: 534-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940365

ABSTRACT

Early warning indicators for process failures were investigated to develop a reliable method to increase the production efficiency of biogas plants. Organic overloads by the excessive addition of rapeseed oil were used to provoke the decrease in the gas production rate. Besides typical monitoring parameters, as pH, methane and hydrogen contents, biogas production rate and concentrations of fatty acids; carbon dioxide content, concentrations of calcium and phosphate were monitored. The concentration ratio of volatile fatty acids to calcium acted as an early warning indicator (EWI-VFA/Ca). The EWI-VFA/Ca always clearly and reliably indicated a process imbalance by exhibiting a 2- to 3-fold increase 3-7days before the process failure occurred. At this time, it was still possible to take countermeasures successfully. Furthermore, increases in phosphate concentration and in the concentration ratio of phosphate to calcium also indicated a process failure, in some cases, even earlier than the EWI-VFA/Ca.


Subject(s)
Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Organic Chemicals/analysis , Plant Oils/chemistry , Sewage/chemistry , Waste Products/analysis , Biodegradation, Environmental , Calcium/analysis , Fatty Acids, Monounsaturated , Fatty Acids, Volatile/analysis , Hydrogen-Ion Concentration , Phosphates/analysis , Rapeseed Oil , Sodium Hydroxide/chemistry
12.
Water Sci Technol ; 65(11): 1954-62, 2012.
Article in English | MEDLINE | ID: mdl-22592464

ABSTRACT

The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(®) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(®) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.


Subject(s)
Chemical Precipitation , Magnesium Compounds/chemistry , Phosphates/chemistry , Thermodynamics , Urease/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Pilot Projects , Struvite , Time Factors , Urease/chemistry
15.
Microb Biotechnol ; 5(3): 433-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22452819

ABSTRACT

About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical-scale plants on source-separated domestic wastewater, pre-treated manure and sewage, and liquors from organic waste bioenergy plants. A 'microbial resource management' (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers 'Who': biodiversity and its dynamic patterns, 'What': physiology, and 'Where': architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start-up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N(2)O emissions and obtain through OLAND a plant-wide net energy gain from sewage treatment.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Biotechnology/methods , Quaternary Ammonium Compounds/metabolism , Bacteria/growth & development , Nitrification , Sewage/chemistry , Sewage/microbiology
16.
J Ind Microbiol Biotechnol ; 39(4): 567-77, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21927907

ABSTRACT

Crack repair is crucial since cracks are the main cause for the decreased service life of concrete structures. An original and promising way to repair cracks is to pre-incorporate healing agents inside the concrete matrix to heal cracks the moment they appear. Thus, the concrete obtains self-healing properties. The goal of our research is to apply bacterially precipitated CaCO3 to heal cracks in concrete since the microbial calcium carbonate is more compatible with the concrete matrix and more environmentally friendly relative to the normally used polymeric materials. Diatomaceous earth (DE) was used in this study to protect bacteria from the high-pH environment of concrete. The experimental results showed that DE had a very good protective effect for bacteria. DE immobilized bacteria had much higher ureolytic activity (12-17 g/l urea was decomposed within 3 days) than that of un-immobilized bacteria (less than 1 g/l urea was decomposed within the same time span) in cement slurry. The optimal concentration of DE for immobilization was 60% (w/v, weight of DE/volume of bacterial suspension). Self-healing in cracked specimens was visualized under light microscopy. The images showed that cracks with a width ranging from 0.15 to 0.17 mm in the specimens containing DE immobilized bacteria were completely filled by the precipitation. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the precipitation around the crack wall, which was confirmed to be calcium carbonate. The result from a capillary water absorption test showed that the specimens with DE immobilized bacteria had the lowest water absorption (30% of the reference ones), which indicated that the precipitation inside the cracks increased the water penetration resistance of the cracked specimens.


Subject(s)
Bacillus/metabolism , Calcium Carbonate/metabolism , Construction Materials/microbiology , Diatomaceous Earth/chemistry , Industrial Microbiology , Urea/metabolism , Glass Ionomer Cements , Microscopy, Electron, Scanning , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...