Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Eur J Pharm Sci ; 199: 106798, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38740075

ABSTRACT

OBJECTIVES: 1) Identify processes limiting the arrival of itraconazole at the intestinal epithelium when Sporanox® amorphous solid dispersion (ASD) pellets are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal. 2) Evaluate whether itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are useful for the assessment of dose effects in the fed state and food effects on plasma levels. METHODS: Itraconazole concentrations, apparent viscosity, and solubilization capacity were measured in aspirates from the upper gastrointestinal lumen collected during a recently performed clinical study in healthy adults. Published itraconazole concentrations in plasma, after a high-calorie high-fat meal and Sporanox® ASD pellets, and in contents of the upper small intestine of healthy adults, after administration of Sporanox® ASD pellets in the fasted state, were used to achieve the second objective. RESULTS: When Sporanox® ASD pellets (up to 200 mg) are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal, itraconazole concentrations in the colloidal phase or the micellar phase of aqueous contents of the upper small intestine are unsaturated, in most cases. During the first 3 h post-dosing after a high-calorie, high-fat meal, the impact of dose (200 mg vs. 100 mg) on itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine seems to underestimate the impact of dose on plasma levels. When Sporanox® ASD pellets are administered after a high-calorie, high-fat meal at the 200 mg dose level, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are, on average, lower than those achieved in fasted state. CONCLUSIONS: When Sporanox® ASD pellets are transferred from the stomach to the upper small intestine after a high-calorie, high-fat meal, itraconazole's arrival at the intestinal epithelium seems to be limited by its arrival at the colloidal phase of aqueous contents of the upper small intestine. The impact of dose (100 mg vs. 200 mg) on plasma levels after a high-calorie, high-fat meal and during the gastrointestinal transfer of Sporanox® pellets requires consideration of pre-systemic itraconazole metabolism. At the 200 mg dose level, after taking into consideration differences in the volume of the contents of the upper small intestine between the fasted and the fed state during the gastrointestinal transfer of Sporanox® ASD pellets, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine suggest a mild negative food effect on average plasma levels; published clinical data are inconclusive.


Subject(s)
Itraconazole , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Itraconazole/blood , Itraconazole/chemistry , Administration, Oral , Humans , Adult , Antifungal Agents/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/blood , Male , Intestinal Absorption , Solubility , Food-Drug Interactions , Diet, High-Fat , Intestine, Small/metabolism , Viscosity , Female , Young Adult
2.
J Pharm Sci ; 113(6): 1546-1554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38218315

ABSTRACT

Information on the conditions under which drugs are transferred from the stomach through the upper small intestine after a high-calorie, high-fat meal is very limited. To simulate the drug presence after disintegration and arrival in the antral region, paracetamol solution and Sporanox® amorphous solid dispersion pellets at two dose levels were administered to the antrum of 8 healthy adults 30 min after administration of a high-calorie, high-fat meal on a crossover basis. The overall median buffer capacity of antral contents was estimated to be 18.0 and 24.0 mmol/ml/ΔpH when titrating with NaOH and HCl, respectively. The corresponding values for the contents of upper the small intestine were 14.0 and 16.8 mmol/ml/ΔpH, respectively. The drug transfer process from the antrum through the upper small intestine occurred with apparent first-order kinetics. The best estimate for the antral emptying half-life was 39min and 45min for paracetamol and itraconazole, respectively, the apparent volume of contents of the upper small intestine was more than double compared with previously reported values in the fasted state, the half-life of drug elimination from the upper small intestine was similar to recent estimates for highly permeable drugs in the fasted state, and the apparent volume of antral contents during the first couple of hours post drug administration was 303mL. Information collected in this study could increase the reliability of in silico and/or in vitro modelling approaches applied in clinical drug development.


Subject(s)
Acetaminophen , Intestine, Small , Humans , Adult , Intestine, Small/metabolism , Male , Acetaminophen/pharmacokinetics , Acetaminophen/administration & dosage , Female , Young Adult , Cross-Over Studies , Gastric Emptying/physiology , Meals , Diet, High-Fat/adverse effects , Fasting/metabolism , Intestinal Absorption/drug effects , Gastric Mucosa/metabolism , Food-Drug Interactions , Stomach/drug effects
3.
Pharmaceutics ; 15(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896157

ABSTRACT

Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed.

4.
Eur J Pharm Sci ; 188: 106510, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37380062

ABSTRACT

The term "intestinal dysbiosis" is used for indicating change(s) of the intestinal microbiota which have been associated with the development of diseases and the deterioration of disease treatments in humans. In this review, documented clinical effects of drug-induced intestinal dysbiosis are briefly presented, and methodologies which could be considered for the management of drug-induced intestinal dysbiosis based on clinical data are critically reviewed. Until relevant methodologies are optimized and/or their effectiveness to the general population is confirmed, and, since drug-induced intestinal dysbiosis refers predominantly to antibiotic-specific intestinal dysbiosis, a pharmacokinetically-based approach for mitigating the impact of antimicrobial therapy on intestinal dysbiosis is proposed.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Humans , Anti-Bacterial Agents/pharmacology , Intestines , Dysbiosis/chemically induced , Dysbiosis/drug therapy
5.
Eur J Pharm Sci ; 188: 106505, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37343604

ABSTRACT

Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.


Subject(s)
Body Fluids , Cyclodextrins , Biopharmaceutics , Solubility , Administration, Oral
6.
Eur J Pharm Sci ; 188: 106496, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37329924

ABSTRACT

The older population consisting of persons aged 65 years or older is the fastest-growing population group and also the major consumer of pharmaceutical products. Due to the heterogenous ageing process, this age group shows high interindividual variability in the dose-exposure-response relationship and, thus, a prediction of drug safety and efficacy is challenging. Although physiologically based pharmacokinetic (PBPK) modelling is a well-established tool to inform and confirm drug dosing strategies during drug development for special population groups, age-related changes in absorption are poorly accounted for in current PBPK models. The purpose of this review is to summarise the current state-of-knowledge in terms of physiological changes with increasing age that can influence the oral absorption of dosage forms. The capacity of common PBPK platforms to incorporate these changes and describe the older population is also discussed, as well as the implications of extrinsic factors such as drug-drug interactions associated with polypharmacy on the model development process. The future potential of this field will rely on addressing the gaps identified in this article, which can subsequently supplement in-vitro and in-vivo data for more robust decision-making on the adequacy of the formulation for use in older adults and inform pharmacotherapy.


Subject(s)
Dietary Supplements , Drug Development , Models, Biological , Computer Simulation
7.
Mol Pharm ; 20(6): 2836-2852, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37125690

ABSTRACT

The present study aimed to explore the usefulness of beagle dogs in combination with physiologically based pharmacokinetic (PBPK) modeling in the evaluation of drug exposure after oral administration to pediatric populations at an early stage of pharmaceutical product development. An exploratory, single-dose, crossover bioavailability study in six beagles was performed. A paracetamol suspension and an ibuprofen suspension were coadministered in the fasted-state conditions, under reference-meal fed-state conditions, and under infant-formula fed-state conditions. PBPK models developed with GastroPlus v9.7 were used to inform the extrapolation of beagle data to human infants and children. Beagle-based simulation outcomes were compared with published human-adult-based simulations. For paracetamol, fasted-state conditions and reference-meal fed-state conditions in beagles appeared to provide adequate information for the applied scaling approach. Fasted-state and/or reference-meal fed-state conditions in beagles appeared suitable to simulate the performance of ibuprofen suspension in pediatric populations. Contrary to human-adult-based translations, extrapolations based on beagle data collected under infant-formula fed-state conditions appeared less useful for informing simulations of plasma levels in pediatric populations. Beagle data collected under fasted and/or reference-meal fed-state conditions appeared to be useful in the investigation of pediatric product performance of the two investigated highly permeable and highly soluble drugs in the upper small intestine. The suitability of the beagle as a preclinical model to understand pediatric drug product performance under different dosing conditions deserves further evaluation with a broader spectrum of drugs and drug products and comparisons with pediatric in vivo data.


Subject(s)
Acetaminophen , Ibuprofen , Adult , Infant , Humans , Animals , Dogs , Child , Ibuprofen/pharmacokinetics , Administration, Oral , Biological Availability , Infant Formula , Suspensions , Models, Biological
8.
Eur J Pharm Sci ; 187: 106452, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37098371

ABSTRACT

The purpose of this review is to summarize the current knowledge on three physiological determinants of oral drug absorption, i.e., gastric emptying, volumes and composition of luminal fluids, and intestinal permeability, in the advanced age population, so that potential knowledge gaps and directions for further research efforts are identified. Published data on gastric emptying rates in older people are conflicting. Also, there are significant knowledge gaps, especially on gastric motility and emptying rates of drugs and of non-caloric fluids. Compared with younger adults, volumes of luminal contents seem to be slightly smaller in older people. Our understanding on the impact of advanced age on luminal physicochemical characteristics is, at best, very limited, whereas the impact of (co)morbidities and geriatric syndromes in the advanced age population has not been addressed to date. The available literature on the effect of advanced age on intestinal permeability is limited, and should be approached with caution, primarily due to the limitations of the experimental methodologies used.


Subject(s)
Gastrointestinal Tract , Intestinal Absorption , Adult , Humans , Aged , Gastrointestinal Tract/metabolism , Gastric Emptying , Administration, Oral
9.
J Pharm Sci ; 112(8): 2240-2248, 2023 08.
Article in English | MEDLINE | ID: mdl-36918113

ABSTRACT

The Biorelevant Gastrointestinal Transfer (BioGIT) system is a useful screening tool for assessing the impact of dose and/or formulation on early exposure after administration of immediate release or enabling drug products with a glass of water in the fasted state. The objective of this study was to investigate potential limitations. BioGIT experiments were performed with five low solubility active pharmaceutical ingredients with weakly alkaline characteristics: mebendazole (tablet and chewable tablet), Compound E (aqueous solutions, three doses), pazopanib-HCl (Votrient™ tablet, crushed Votrient™ tablet and aqueous suspension), Compound B-diHCl (hard gelatin capsule, three doses) and Compound C (hard gelatin capsule containing nanosized drug and hard gelatin capsule containing micronized drug). For all formulation or dose comparisons the ratio of mean BioGIT AUC0-50 min values was not predictive of the ratio of mean plasma AUC0-60 min values which became available after completion of BioGIT experiments. BioGIT experimental conditions have not been designed to simulate the gastrointestinal drug transfer process after administration of chewable tablets or aqueous solutions, therefore, BioGIT may not be useful for the assessment of intraluminal performance early after administration of such drug products. Also, based on this study, BioGIT may not be useful in investigating the impact of dose and/or formulation on early exposure when the dose is not administered with a glass of water to fasted healthy individuals or when BioGIT data are highly variable. Finally, the rapid dissolution of nanocrystals after administration of low solubility weak bases may require adjustment of the pH in the gastric compartment of BioGIT to slightly higher pH values. Limitations identified in this study for the BioGIT system may be also relevant to other in vitro systems proposed for similar evaluations.


Subject(s)
Gastrointestinal Tract , Gelatin , Humans , Administration, Oral , Solubility , Suspensions , Tablets , Water
10.
Int J Pharm ; 634: 122670, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36736968

ABSTRACT

The objective of the present study was to confirm the usefulness of BioGIT data in the evaluation of the impact of dose and/or formulation on early exposure after oral administration of immediate release or enabling products of low solubility active pharmaceutical ingredients (APIs) with a glass of water in the fasted state. BioGIT experiments were performed with four APIs: Compound Α (tablet, three dose levels), Compound E (capsule PiC1, capsule PiC2 and tablet), fenofibrate (Lipidil® capsule and Lipidil 145 ONE® tablet) and Compound F (HP-ß-CD aqueous solution and tablet). Based on mean plasma AUC0-60min values which became available after completion of the BioGIT experiments, mean BioGIT AUC0-50min values were useful for the evaluation of the impact of dose and/or formulation on early exposure. The log-transformed ratios of mean BioGIT AUC0-50min values for two doses and/or two formulations estimated in this study and in a recent study for two diclofenac potassium products (Cataflam® tablet and Voltfast® sachet, same dose) vs. the corresponding log-transformed ratios of mean plasma AUC0-60min values (n = 7 pairs of ratios), were included in a previously established correlation between log-transformed ratios of mean BioGIT AUC0-50min values and log-transformed ratios of plasma AUC0-60min values (n = 9 pairs of ratios). The correlation between log-transformed plasma AUC0-60min ratios vs. log-transformed BioGIT AUC0-50min ratios was confirmed (n = 16 pairs of ratios, R = 0.90). Compared with the previously established correlation the statistical characteristics were improved. Based on this study, the BioGIT system could be useful as a screening tool for assessing the impact of dose and/or formulation differences on early exposure, after administration of immediate release or enabling drug products of low solubility APIs with a glass of water in the fasted state, on an a priori basis.


Subject(s)
Fenofibrate , Administration, Oral , Diclofenac , Fasting , Tablets , Cross-Over Studies , Therapeutic Equivalency , Area Under Curve
11.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38256887

ABSTRACT

To date, food-drug interactions in the pediatric population remain understudied. The current food effect studies are mostly performed in adults and do not mimic the real-life situation in the pediatric population. Since the potential benefits of food effect studies performed in pediatrics should be counterbalanced with the burden that these studies pose to the patients, alternative research strategies should be evaluated. The present study aimed to evaluate whether population pharmacokinetics (popPK) using data in beagle dogs and human adults could reliably assess food effects relevant for the pediatric population. PopPK was utilized to understand the performance of paracetamol under different dosing conditions (when the participants were fasted, with a reference meal, and with infant formula) in human adults (n = 8) and beagle dogs (n = 6) by constructing models to derive the pharmacokinetic parameters and to evaluate the food effects in both species. A two-compartment model with a single input function for the absorption phase best described the profiles of paracetamol in the beagle dogs. In the human adults, a one-compartment model with a dual input function for the absorption phase best described the data. The simulated profiles for the different dosing conditions demonstrated that both the human adults' and beagle dogs' simulations were able to acceptably describe the plasma concentration-time profiles of paracetamol observed in a representative pediatric population, which opens up perspectives on pediatric-relevant food effect predictions. However, the obtained results should be carefully interpreted, since an accurate validation of these findings was not possible due to the scarcity of the literature on observed pediatric data.

12.
AAPS J ; 24(5): 89, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974242

ABSTRACT

The majority of drug candidates exhibit weakly basic characteristics with high lipophilicity. The risk of intraluminal compound precipitation has been studied in vivo and extensively in vitro using advanced dissolution transfer setups mimicking drug transfer from the stomach to the small intestine. The present investigation aims to evaluate the usefulness of the recently introduced Artificial Stomach-Duodenum in silico tool in the DDDPlusTM platform (ASD-D+) to simulate intraluminal drug behavior. The weakly basic drugs ketoconazole and dipyridamole were used as model drugs within the ASD-D+ model at two dose levels. The simulated amounts per volume were compared to intraluminal data collected from fasted healthy adults. Four different in silico transfer models running on a continuous or a stepwise mode were utilized for the simulations. Each transfer model exhibited different capabilities to simulate observed intraluminal drug presence. Three out of the four in silico models overestimated the total drug amount measured in vivo (dissolved and precipitated drug), while only two of the four models matched the intraluminal drug concentrations. The stepwise model enabled adequate simulations of both drug concentration and total drug amount. The present investigation highlighted the importance of simulating drug transfer appropriately within the applied methodology prior to estimating precipitation kinetics. As a future step, optimization of ASD-D+ model would enable evaluations of solid/semi-solid dosage form simulations. Lastly, prediction of drug precipitation kinetics following simulation of gastrointestinal transfer may provide mechanistic understanding of drug absorption and appropriate justification of drug-formulated parameters within physiologically based pharmacokinetic models.


Subject(s)
Ketoconazole , Models, Biological , Administration, Oral , Adult , Computer Simulation , Dipyridamole/pharmacokinetics , Humans , Intestinal Absorption/physiology , Intestine, Small/metabolism , Ketoconazole/pharmacokinetics , Solubility
13.
Mol Pharm ; 19(7): 2542-2548, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35729720

ABSTRACT

The first aim of this study was to evaluate the usefulness of optimized human fecal material in simulating sulforeductase activity in the lower intestine by assessing bacterial degradation of sulindac and sulfinpyrazone, two sulforeductase substrates. The second aim was to evaluate the usefulness of drug degradation half-life generated in simulated colonic bacteria (SCoB) in informing PBPK models. Degradation experiments of sulfinpyrazone and of sulindac in SCoB were performed under anaerobic conditions using recently described methods. For sulfinpyrazone, the abundance of clinical data allowed for construction of a physiologically based pharmacokinetic (PBPK) model and evaluation of luminal degradation clearance determined from SCoB data. For sulindac, the availability of sulindac sulfide and sulindac sulfone standards allowed for evaluating the formation of the main metabolite, sulindac sulfide, during the experiments in SCoB. Both model compounds degraded substantially in SCoB. The PBPK model was able to adequately capture exposure of sulfinpyrazone and its sulfide metabolite in healthy subjects, in ileostomy and/or colectomy subjects, and in healthy subjects pretreated with metoclopramide by implementing degradation half-lives in SCoB to calculate intrinsic colon clearance. Degradation rates of sulindac and formation rates of sulindac sulfide in SCoB were almost identical, in line with in vivo data suggesting the sulindac sulfide is the primary metabolite in the lower intestine. Experiments in SCoB were useful in simulating sulforeductase related bacterial degradation activity in the lower intestine. Degradation half-life calculated from experiments in SCoB is proven useful for informing a predictive PBPK model for sulfinpyrazone.


Subject(s)
Sulfinpyrazone , Sulindac , Bacteria , Humans , Intestines , Kinetics , Sulfinpyrazone/metabolism , Sulindac/metabolism
14.
Pharmaceutics ; 14(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35214088

ABSTRACT

The aim of this study was to understand drug solubilization as a function of age and identify drugs at risk of altered drug solubility in newborns and young infants in comparison to adults. Multivariate statistical analysis was used to understand drug solubilization as a function of drug's physicochemical properties and the composition of gastrointestinal fluids. The solubility of seven poorly soluble compounds was assessed in adult and age-specific fasted and fed state biorelevant media. Partial least squares regression (PLS-R) was used to assess the influence of (i) drug physicochemical properties and (ii) age-related changes in simulated GI fluids, as well as (iii) their interactions, on the pediatrics-to-adult solubility ratio (Sp/Sa (%)). For five out of seven of the compounds investigated, Sp/Sa (%) values fell outside of the 80-125% limits in at least one of the pediatric media. Lipophilicity was responsible for driving drug solubility differences between adults and children in all the biorelevant media investigated, while drug ionization was most relevant in the fed gastric media, and the fasted/fed intestinal media. The concentration of bile salts and lecithin in the fasted and fed intestinal media was critical in influencing drug solubility, while food composition (i.e., cow's milk formula vs. soy formula) was a critical parameter in the fed gastric state. Changes in GI fluid composition between younger pediatric patients and adults can significantly alter drug luminal solubility. The use of pediatric biorelevant media can be helpful to identify the risk of altered drug solubilization in younger patients during drug development.

15.
AAPS J ; 24(1): 27, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013803

ABSTRACT

This study aimed to build a physiologically based pharmacokinetic (PBPK) model coupled with age-appropriate in vitro dissolution data to describe drug performance in adults and pediatric patients. Montelukast sodium was chosen as a model drug. Two case studies were investigated: case study 1 focused on the description of formulation performance from adults to children; case study 2 focused on the description of the impact of medicine co-administration with vehicles on drug exposure in infants. The PBPK model for adults and pediatric patients was developed in Simcyp® v18.2 informed by age-appropriate in vitro dissolution results obtained in a previous study. Oral administration of montelukast was simulated with the ADAM™ model. For case study 1, the developed PBPK model accurately described montelukast exposure in adults and children populations after the administration of montelukast chewable tablets. Two-stage dissolution testing in simulated fasted gastric to intestinal conditions resulted in the best description of in vivo drug performance in adults and children. For case study 2, a good description of in vivo drug performance in infants after medicine co-administration with vehicles was achieved by incorporating in vitro drug dissolution (under simulated fasted gastric to fed intestinal conditions) into a fed state PBPK model with consideration of the in vivo dosing conditions (mixing of formulation with applesauce or formula). The case studies presented demonstrate how a PBPK absorption modelling strategy can facilitate the description of drug performance in the pediatric population to support decision-making and biopharmaceutics understanding during pediatric drug development.


Subject(s)
Acetates/administration & dosage , Chemistry, Pharmaceutical/methods , Cyclopropanes/administration & dosage , Drug Development/methods , Models, Biological , Quinolines/administration & dosage , Sulfides/administration & dosage , Acetates/chemistry , Administration, Oral , Adolescent , Adult , Age Factors , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Biopharmaceutics , Child , Child, Preschool , Computer Simulation , Cyclopropanes/chemistry , Drug Liberation , Female , Humans , Infant , Male , Pediatrics , Quinolines/chemistry , Solubility , Sulfides/chemistry , Young Adult
16.
AAPS J ; 24(1): 26, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013835

ABSTRACT

This study aimed to explore the potential of biopharmaceutics in vitro tools to predict drug product performance in the pediatric population. Biorelevant dissolution set-ups were used to predict how age and medicine administration practices affect the in vitro dissolution of oral formulations of a poorly water-soluble compound, montelukast. Biorelevant age-appropriate dissolution studies of Singulair® (granules and chewable tablets) were conducted with the µDISS profiler™, USP 4 apparatus, USP 2 apparatus, and mini-paddle apparatus. Biorelevant simulating fluids representative of adult and pediatric conditions were used in the dissolution studies. The biorelevant dissolution conditions were appropriately selected (i.e. volumes, transit times, etc.) to mimic the gastrointestinal conditions of each of the subpopulations tested. Partial least squares regression (PLS-R) was performed to understand the impact of in vitro variables on the dissolution of montelukast. Montelukast dissolution was significantly affected by the in vitro hydrodynamics used to perform the dissolution tests (µDISS profiler™: positive effect); choice of simulation of gastric (negative effect) and/or intestinal conditions (positive effect) of the gastrointestinal tract; and simulation of prandial state (fasted state: negative effect, fed state: positive effect). Age-related biorelevant dissolution of Singulair® granules predicted the in vivo effect of the co-administration of the formulation with applesauce and formula in infants. This study demonstrates that age-appropriate biorelevant dissolution testing can be a valuable tool for the assessment of drug performance in the pediatric population.


Subject(s)
Acetates/administration & dosage , Anti-Asthmatic Agents/administration & dosage , Chemistry, Pharmaceutical/methods , Cyclopropanes/administration & dosage , Quinolines/administration & dosage , Sulfides/administration & dosage , Acetates/chemistry , Administration, Oral , Adult , Age Factors , Anti-Asthmatic Agents/chemistry , Biopharmaceutics , Child , Cyclopropanes/chemistry , Drug Liberation , Food-Drug Interactions , Humans , Hydrodynamics , Infant , Least-Squares Analysis , Pediatrics , Quinolines/chemistry , Solubility , Sulfides/chemistry
17.
J Pharm Sci ; 111(1): 197-205, 2022 01.
Article in English | MEDLINE | ID: mdl-34673096

ABSTRACT

We evaluated the environment in TIM-1 luminal compartments using paracetamol and danazol solutions and suspensions and the fed state configuration. Data were compared with recently published data in healthy adults. TIM-1 experiments were performed with a 3-fold downscale. Volumes of secretions in gastric and duodenal compartments adequately reflected the luminal data in adults up to 3 h post drug dosing. pH values in duodenal and jejunal compartments adequately reflected average pH values in adults. In gastric compartment pH values where initially higher than average values in adults and reached baseline levels earlier than in adults. The environment in the TIM-1 gastric compartment and jejunal compartment adequately reflected the average total paracetamol and danazol amounts per volume of contents in the adult stomach and upper small intestine, respectively. Total bile acids concentrations in the micellar phase of contents in duodenal and jejunal compartments overestimated micellar concentrations in the upper small intestine of adults. Adjustments in gastric emptying/acid secretion rates and bile acids identities in the duodenal and jejunal compartments, and application of dynamic bile acids secretion rates are expected to further improve the relevance of luminal conditions in TIM-1 compartments with those in adults.


Subject(s)
Intestine, Small , Stomach , Adult , Computer Simulation , Duodenum , Humans , Suspensions
18.
Eur J Pharm Sci ; 172: 106100, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34936937

ABSTRACT

This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.


Subject(s)
COVID-19 , Gastrointestinal Tract , Administration, Oral , Computer Simulation , Gastrointestinal Absorption/physiology , Gastrointestinal Tract/metabolism , Humans , Intestinal Absorption , Male , Models, Biological , Pharmaceutical Preparations/metabolism , Solubility
19.
Eur J Pharm Sci ; 168: 106034, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34628003

ABSTRACT

A small-scale two-stage biphasic system, a small-scale two-stage dissolution-permeation system, the Erweka mini-paddle apparatus, and the BioGIT system were evaluated for their usefulness in assessing the intraluminal performance of two low solubility drugs in the fasted state, one with weakly acidic properties (tested in a salt form, diclofenac potassium) and one with weakly alkaline properties [ritonavir, tested as an amorphous solid dispersion (ASD) formulation]. In all in vitro methods, an immediate-release tablet and a powder formulation of diclofenac potassium were both rapidly dissolved in Level II biorelevant media simulating the conditions in the upper small intestine. Physiologically based biopharmaceutics (PBB) modelling for the tablet formulation resulted in a successful simulation of the average plasma profile in adults, whereas for the powder formulation modelling indicated that gastric emptying and transport through the intestinal epithelium limit the absorption rates. Detailed information on the behaviour of the ritonavir ASD formulation under both simulated gastric and upper small intestinal conditions were crucial for understanding the luminal performance. PBB modelling showed that the dissolution and precipitation parameters, estimated from the Erweka mini-paddle apparatus data and the small-scale two-stage biphasic system data, respectively, were necessary to adequately simulate the average plasma profile after administration of the ritonavir ASD formulation. Simulation of the gastrointestinal transfer process from the stomach to the small intestine was necessary to evaluate the effects of hypochlorhydric conditions on the luminal performance of the ritonavir ASD formulation. Based on this study, the selection of the appropriate in vitro method for evaluating the intraluminal performance of ionisable lipophilic drugs depends on the characteristics of the drug substance. The results suggest that for (salts of) acidic drugs (e.g., diclofenac potassium) it is only an issue of availability and ease of operation of the apparatus. For weakly alkaline substances (e.g., ritonavir), the results indicate that the dynamic dissolution process needs to be simulated, with the type of requested information (e.g., dissolution parameters, precipitation parameters, luminal concentrations) being key for selecting the most appropriate method. Regardless of the ionisation characteristics, early in the drug development process the use of small-scale systems may be inevitable, due to the limited quantities of drug substance available.


Subject(s)
Fasting , Administration, Oral , In Vitro Techniques , Solubility , Tablets
20.
Pharm Res ; 38(11): 1889-1896, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34697725

ABSTRACT

PURPOSE: To understand drug solubilization as a function of age and identify drugs at risk of altered drug solubility in pediatric patients. To assess the discrimination ability of the Abraham solvation parameters and age-related changes in simulated media composition to predict in vitro drug solubility differences between pediatric and adult gastrointestinal conditions by multivariate data analysis. METHODS: Differences between drug solubility in pediatric and adult biorelevant media were expressed as a % pediatric-to-adult ratio [Sp/Sa (%)]. Solubility ratios of fourteen poorly water-soluble drugs (2 amphoteric; 4 weak acids; 4 weak bases; 4 neutral compounds) were used in the analysis. Partial Least Squares Regression was based on Abraham solvation parameters and age-related changes in simulated gastrointestinal fluids, as well as their interactions, to predict the pediatric-to-adult solubility ratio. RESULTS: The use of Abraham solvation parameters was useful as a theory-informed set of molecular predictors of drug solubility changes between pediatric and adult simulated gastrointestinal fluids. Our findings suggest that the molecular solvation environment in the fasted gastric state was similar in the pediatric age-groups studied, which led to fewer differences in the pediatric-to-adult solubility ratio. In the intestinal fasted and fed state, there was a high relative contribution of the physiologically relevant surfactants to the alteration of drug solubility in the pediatric simulated conditions compared to the adult ones, which confirms the importance of an age-appropriate composition in biorelevant media. CONCLUSION: Statistical models based on Abraham solvation parameters were applied mostly to better understand drug solubility differences in adult and pediatric biorelevant media.


Subject(s)
Body Fluids/metabolism , Gastrointestinal Absorption/physiology , Administration, Oral , Adult , Age Factors , Body Fluids/chemistry , Child , Gastric Mucosa/metabolism , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...