Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 9245, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915310

ABSTRACT

Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer's fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.


Subject(s)
Adaptation, Physiological/genetics , Oryza/genetics , Breeding/methods , Droughts , Floods , Genes, Plant/genetics , Quantitative Trait Loci/genetics
2.
PLoS One ; 8(5): e62795, 2013.
Article in English | MEDLINE | ID: mdl-23667521

ABSTRACT

BACKGROUND: Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. METHODOLOGY/PRINCIPAL FINDINGS: Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the -QTL BILs and IR64, four major-effect QTL--one each on chromosomes 2, 4, 9, and 10--were identified. Meta-analysis of transcriptome data from the +QTL/-QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha⁻¹ over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. CONCLUSIONS/SIGNIFICANCE: Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL combinations in different genetic backgrounds to maximize yield advantage under drought.


Subject(s)
Adaptation, Biological/genetics , Agriculture/methods , Droughts , Oryza/growth & development , Oryza/genetics , Quantitative Trait Loci/genetics , Transcriptome/genetics , Crosses, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...