Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(9): 113109, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37682706

ABSTRACT

Neuronal signals encoding the animal's position widely modulate neocortical processing. While these signals are assumed to depend on hippocampal output, their origin has not been investigated directly. Here, we asked which brain region sends position information to the retrosplenial cortex (RSC), a key circuit for memory and navigation. We comprehensively characterized the long-range inputs to agranular RSC using two-photon axonal imaging in head-fixed mice performing a spatial task in darkness. Surprisingly, most long-range pathways convey position information, but with notable differences. Axons from the secondary motor and posterior parietal cortex transmit the most position information. By contrast, axons from the anterior cingulate and orbitofrontal cortex and thalamus convey substantially less position information. Axons from the primary and secondary visual cortex contribute negligibly. This demonstrates that the hippocampus is not the only source of position information. Instead, the RSC is a hub in a distributed brain network that shares position information.

2.
Curr Biol ; 33(21): 4599-4610.e7, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37774708

ABSTRACT

How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.


Subject(s)
Gyrus Cinguli , Spatial Navigation , Mice , Animals , Gyrus Cinguli/physiology , Mental Recall/physiology , Spatial Navigation/physiology , Neurons/physiology , Emotions , Space Perception/physiology
3.
Cell Rep ; 40(4): 111132, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905724

ABSTRACT

Evidence suggests that the hippocampus conveys memory-related neural patterns across distributed cortical circuits during high-frequency oscillations called sharp-wave ripples (SWRs). We investigate how circuit activity in the retrosplenial cortex (RSC), a primary hippocampal target, could aid in processing SWR-related input. Using patch-clamp recordings from awake mice, we find that SWR-aligned membrane potential modulation is widespread but weak, and that spiking responses are sparse. However, using cell-type-specific two-photon Ca2+ imaging and optogenetics, we show that, 1-2 s before SWRs, superficial inhibition and thalamocortical input in RSC is reduced. We propose that pyramidal dendrites experience decreased local inhibition and subcortical interference in a seconds-long time window preceding SWRs. This may aid communication of weak and sparse SWR-aligned excitation between the hippocampus and neocortex and promote the strengthening of memory-related connections.


Subject(s)
Hippocampus , Wakefulness , Animals , Hippocampus/physiology , Mice , Optogenetics , Wakefulness/physiology
4.
Cell Rep ; 39(11): 110948, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705055

ABSTRACT

Dendrites are essential determinants of the input-output relationship of single neurons, but their role in network computations is not well understood. Here, we use a combination of dendritic patch-clamp recordings and in silico modeling to determine how dendrites of parvalbumin (PV)-expressing basket cells contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings from PV basket cells in the dentate gyrus reveal that the slope, or gain, of the dendritic input-output relationship is exceptionally low, thereby reducing the cell's sensitivity to changes in its input. By simulating gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike synchrony in PV basket cell assemblies when cells are driven by spatially and temporally heterogeneous synaptic inputs. These results highlight the role of inhibitory neuron dendrites in synchronized network oscillations.


Subject(s)
Interneurons , Parvalbumins , Action Potentials/physiology , Dendrites/physiology , Interneurons/physiology , Neurons
5.
Cell Rep ; 37(12): 110134, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936869

ABSTRACT

Neurons that signal the angular velocity of head movements (AHV cells) are important for processing visual and spatial information. However, it has been challenging to isolate the sensory modality that drives them and to map their cortical distribution. To address this, we develop a method that enables rotating awake, head-fixed mice under a two-photon microscope in a visual environment. Starting in layer 2/3 of the retrosplenial cortex, a key area for vision and navigation, we find that 10% of neurons report angular head velocity (AHV). Their tuning properties depend on vestibular input with a smaller contribution of vision at lower speeds. Mapping the spatial extent, we find AHV cells in all cortical areas that we explored, including motor, somatosensory, visual, and posterior parietal cortex. Notably, the vestibular and visual contributions to AHV are area dependent. Thus, many cortical circuits have access to AHV, enabling a diverse integration with sensorimotor and cognitive information.


Subject(s)
Gyrus Cinguli/physiology , Head Movements , Microscopy/methods , Motion Perception , Neurons/physiology , Space Perception , Vestibule, Labyrinth/physiology , Animals , Female , Male , Mice , Mice, Transgenic , Parietal Lobe/physiology , Visual Perception
6.
Front Cell Neurosci ; 15: 681066, 2021.
Article in English | MEDLINE | ID: mdl-34093134

ABSTRACT

Imaging the intact brain of awake behaving mice without the dampening effects of anesthesia, has revealed an exceedingly rich repertoire of astrocytic Ca2+ signals. Analyzing and interpreting such complex signals pose many challenges. Traditional analyses of fluorescent changes typically rely on manually outlined static region-of-interests, but such analyses fail to capture the intricate spatiotemporal patterns of astrocytic Ca2+ dynamics. Moreover, all astrocytic Ca2+ imaging data obtained from awake behaving mice need to be interpreted in light of the complex behavioral patterns of the animal. Hence processing multimodal data, including animal behavior metrics, stimulation timings, and electrophysiological signals is needed to interpret astrocytic Ca2+ signals. Managing and incorporating these data types into a coherent analysis pipeline is challenging and time-consuming, especially if research protocols change or new data types are added. Here, we introduce Begonia, a MATLAB-based data management and analysis toolbox tailored for the analyses of astrocytic Ca2+ signals in conjunction with behavioral data. The analysis suite includes an automatic, event-based algorithm with few input parameters that can capture a high level of spatiotemporal complexity of astrocytic Ca2+ signals. The toolbox enables the experimentalist to quantify astrocytic Ca2+ signals in a precise and unbiased way and combine them with other types of time series data.

7.
Nat Commun ; 11(1): 3240, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632168

ABSTRACT

Astrocytic Ca2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca2+ activity, brain rhythms and behavior. We show that astrocytic Ca2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca2+ signaling in regulating slow wave sleep.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Sleep, Slow-Wave/physiology , Animals , Mice , Wakefulness/physiology
8.
Neuroscience ; 368: 115-131, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28756117

ABSTRACT

Cortical inhibitory interneurons have a wide range of important functions, including balancing network excitation, enhancing spike-time precision of principal neurons, and synchronizing neural activity within and across brain regions. All these functions critically depend on the integration of synaptic inputs in their dendrites. But the sparse number of inhibitory cells, their small caliber dendrites, and the problem of cell-type identification, have prevented fast progress in analyzing their dendritic properties. Despite these challenges, recent advancements in electrophysiological, optical and molecular tools have opened the door for studying synaptic integration and dendritic computations in molecularly defined inhibitory interneurons. Accumulating evidence indicates that the biophysical properties of inhibitory neuron dendrites differ substantially from those of pyramidal neurons. In addition to the supralinear dendritic integration commonly observed in pyramidal neurons, interneuron dendrites can also integrate synaptic inputs in a linear or sublinear fashion. In this comprehensive review, we compare the dendritic biophysical properties of the three major classes of cortical inhibitory neurons and discuss how these cell type-specific properties may support their functions in the cortex.


Subject(s)
Cerebral Cortex/physiology , Dendrites/physiology , Interneurons/physiology , Neural Inhibition/physiology , Patch-Clamp Techniques/methods , Synaptic Transmission/physiology , Animals , Cerebral Cortex/cytology , Humans
9.
Nat Commun ; 8: 15557, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28534495

ABSTRACT

Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.


Subject(s)
Brain/blood supply , Neovascularization, Physiologic/physiology , Physical Conditioning, Animal/physiology , Receptors, G-Protein-Coupled/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Capillaries/cytology , Capillaries/drug effects , Capillaries/metabolism , Injections, Subcutaneous , Lactic Acid/administration & dosage , Lactic Acid/blood , Lactic Acid/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Pericytes/metabolism , Receptors, G-Protein-Coupled/genetics
10.
Cereb Cortex ; 27(1): 24-33, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28365776

ABSTRACT

Cortical spreading depression (CSD) is a phenomenon that challenges the homeostatic mechanisms on which normal brain function so critically depends. Analyzing the sequence of events in CSD holds the potential of providing new insight in the physiological processes underlying normal brain function as well as the pathophysiology of neurological conditions characterized by ionic dyshomeostasis. Here, we have studied the sequential progression of CSD in awake wild-type mice and in mice lacking aquaporin-4 (AQP4) or inositol 1,4,5-triphosphate type 2 receptor (IP3R2). By the use of a novel combination of genetically encoded sensors that a novel combination - an unprecedented temporal and spatial resolution, we show that CSD leads to brisk Ca2+ signals in astrocytes and that the duration of these Ca2+ signals is shortened in the absence of AQP4 but not in the absence of IP3R2. The decrease of the astrocytic, AQP4-dependent Ca2+ signals, coincides in time and space with a decrease in the duration of extracellular glutamate overflow but not with the initial peak of the glutamate release suggesting that in CSD, extracellular glutamate accumulation is extended through AQP4-dependent glutamate release from astrocytes. The present data point to a salient glial contribution to CSD and identify AQP4 as a new target for therapy.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/physiology , Cortical Spreading Depression/physiology , Extracellular Fluid/metabolism , Glutamic Acid/metabolism , Wakefulness/physiology , Animals , Aquaporin 4/genetics , Calcium Signaling/physiology , Down-Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
Neuron ; 90(5): 1043-56, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27133465

ABSTRACT

The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells.


Subject(s)
Cerebellum/cytology , Electrical Synapses/physiology , Gap Junctions/physiology , Interneurons/physiology , Animals , Connexins/metabolism , Dendrites/physiology , Female , Male , Mice , Gap Junction delta-2 Protein
12.
Glia ; 64(5): 810-25, 2016 May.
Article in English | MEDLINE | ID: mdl-26775288

ABSTRACT

Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.


Subject(s)
Mitochondria/physiology , Myelin Sheath/physiology , Myelin Sheath/ultrastructure , Oligodendroglia/ultrastructure , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/pharmacology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Myelin Basic Protein/ultrastructure , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2 , Oligodendroglia/metabolism , Organ Culture Techniques , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
13.
Science ; 335(6076): 1624-8, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22403180

ABSTRACT

Electrically coupled inhibitory interneurons dynamically control network excitability, yet little is known about how chemical and electrical synapses regulate their activity. Using two-photon glutamate uncaging and dendritic patch-clamp recordings, we found that the dendrites of cerebellar Golgi interneurons acted as passive cables. They conferred distance-dependent sublinear synaptic integration and weakened distal excitatory inputs. Gap junctions were present at a higher density on distal dendrites and contributed substantially to membrane conductance. Depolarization of one Golgi cell increased firing in its neighbors, and inclusion of dendritic gap junctions in interneuron network models enabled distal excitatory synapses to drive network activity more effectively. Our results suggest that dendritic gap junctions counteract sublinear dendritic integration by enabling excitatory synaptic charge to spread into the dendrites of neighboring inhibitory interneurons.


Subject(s)
Dendrites/physiology , Dendrites/ultrastructure , Electrical Synapses/physiology , Interneurons/physiology , Nerve Net/physiology , Neural Inhibition , Action Potentials , Animals , Axons/physiology , Cerebellar Cortex/cytology , Computer Simulation , Electrical Synapses/ultrastructure , Excitatory Postsynaptic Potentials , Ion Channels/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Nerve Net/ultrastructure , Patch-Clamp Techniques , Synapses/physiology , Synaptic Transmission
14.
Neuron ; 67(3): 435-51, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20696381

ABSTRACT

Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input.


Subject(s)
Cerebellar Cortex/cytology , Cerebellar Cortex/physiology , Cortical Synchronization , Excitatory Postsynaptic Potentials/physiology , Interneurons/physiology , Nerve Net/cytology , Nerve Net/physiology , Synapses/physiology , Animals , Animals, Newborn , Male , Mice , Rats , Rats, Wistar , Time Factors
15.
J Neurosci ; 29(46): 14472-83, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19923281

ABSTRACT

Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/physiology , Pyramidal Cells/physiology , Theta Rhythm , Animals , CA1 Region, Hippocampal/cytology , Male , Membrane Potentials/physiology , Rats , Rats, Wistar , Theta Rhythm/methods
16.
J Neurophysiol ; 100(5): 2589-604, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18684909

ABSTRACT

Calcium-activated K(+) channels of the K(Ca)2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding excitability control were not caused by SK channels but mainly by Kv7/KCNQ/M channels in CA1 hippocampal pyramidal neurons. Thus apparently, these SK channels are hardly activated by somatic Na(+) spikes. To further test this conclusion, we used sharp electrode, whole cell, and perforated-patch recordings from rat CA1 pyramidal neurons. We found that SK channel blockers consistently failed to suppress mAHPs under a range of experimental conditions: mAHPs following single spikes or spike trains, at -60 or -80 mV, at 20-30 degrees C, in low or elevated extracellular [K(+)], or spike trains triggered by synaptic stimulation after blocking N-methyl-d-aspartic acid receptors (NMDARs). Nevertheless, we found that SK channels in these cells were readily activated by artificially enhanced Ca(2+) spikes, and an SK channel opener (1-ethyl-2-benzimidazolinone) enhanced somatic AHPs following Na(+) spikes, thus reducing excitability. In contrast to CA1 pyramidal cells, bursting pyramidal cells in the subiculum showed a Na(+) spike-evoked mAHP that was reduced by apamin, indicating cell-type-dependent differences in mAHP mechanisms. Testing for other SK channel functions in CA1, we found that field excitatory postsynaptic potentials mediated by NMDARs were enhanced by apamin, supporting the idea that dendritic SK channels are activated by NMDAR-dependent calcium influx. We conclude that SK channels in rat CA1 pyramidal cells can be activated by NMDAR-mediated synaptic input and cause feedback regulation of synaptic efficacy but are normally not appreciably activated by somatic Na(+) spikes in this cell type.


Subject(s)
Dendrites/physiology , Hippocampus/cytology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Synapses/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Anthracenes/pharmacology , Apamin/pharmacology , Benzimidazoles/pharmacology , Calcium Channel Agonists/pharmacology , Dendrites/drug effects , Drug Interactions , Electric Stimulation/methods , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , In Vitro Techniques , Male , Patch-Clamp Techniques/methods , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar , Synapses/drug effects
17.
J Physiol ; 580(Pt.3): 859-82, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17303637

ABSTRACT

Neuronal potassium (K(+)) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K(+) channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K(+) channels (in particular the delayed rectifier potassium current (I(DR))) and Na(+) channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour.


Subject(s)
Action Potentials/physiology , Adaptation, Physiological/physiology , Hippocampus/physiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Pyramidal Cells/physiology , Action Potentials/drug effects , Animals , Computer Simulation , Electrophysiology , Hippocampus/drug effects , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Male , Models, Neurological , Peptides/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Synapses/physiology , Tetraethylammonium/pharmacology
18.
J Neurosci ; 27(8): 1853-67, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17314282

ABSTRACT

To understand how electrical signal processing in cortical pyramidal neurons is executed by ion channels, it is essential to know their subcellular distribution. M-channels (encoded by Kv7.2-Kv7.5/KCNQ2-KCNQ5 genes) have multiple important functions in neurons, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Nevertheless, the subcellular distribution of these channels has remained elusive. To determine the M-channel distribution within CA1 pyramidal neurons, we combined whole-cell patch-clamp recording from the soma and apical dendrite with focal drug application, in rat hippocampal slices. Both a M-channel opener (retigabine [N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester]) and a blocker (XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-antracenone]) changed the somatic subthreshold voltage response but had no observable effect on local dendritic responses. Under conditions promoting dendritic Ca2+ spikes, local somatic but not dendritic application of M-channel blockers (linopirdine and XE991) enhanced the Ca2+ spikes. Simultaneous dendritic and somatic whole-cell recordings showed that the medium afterhyperpolarization after a burst of spikes underwent strong attenuation along the apical dendrite and was fully blocked by somatic XE991 application. Finally, by combining patch-clamp and extracellular recordings with computer simulations, we found that perisomatic M-channels reduce the summation of EPSPs. We conclude that functional M-channels appear to be concentrated in the perisomatic region of CA1 pyramidal neurons, with no detectable M-channel activity in the distal apical dendrites.


Subject(s)
Cerebral Cortex/metabolism , KCNQ Potassium Channels/metabolism , Pyramidal Cells/metabolism , Synapses/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Anthracenes/pharmacology , Calcium/metabolism , Carbamates/pharmacology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computer Simulation , Dendrites/metabolism , Dendrites/physiology , Electrophysiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Extracellular Space/physiology , In Vitro Techniques , Indoles/pharmacology , KCNQ Potassium Channels/drug effects , KCNQ Potassium Channels/physiology , Male , Models, Neurological , Patch-Clamp Techniques , Phenylenediamines/pharmacology , Potassium Channel Blockers/pharmacology , Pyramidal Cells/physiology , Pyridines/pharmacology , Rats , Rats, Wistar , Tissue Distribution
19.
Neuron ; 49(2): 257-70, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16423699

ABSTRACT

The persistent Na+ current, INaP, is known to amplify subthreshold oscillations and synaptic potentials, but its impact on action potential generation remains enigmatic. Using computational modeling, whole-cell recording, and dynamic clamp of CA1 hippocampal pyramidal cells in brain slices, we examined how INaP changes the transduction of excitatory current into action potentials. Model simulations predicted that INaP increases afterhyperpolarizations, and, although it increases excitability by reducing rheobase, INaP also reduces the gain in discharge frequency in response to depolarizing current (f/I gain). These predictions were experimentally confirmed by using dynamic clamp, thus circumventing the longstanding problem that INaP cannot be selectively blocked. Furthermore, we found that INaP increased firing regularity in response to sustained depolarization, although it decreased spike time precision in response to single evoked EPSPs. Finally, model simulations demonstrated that I(NaP) increased the relative refractory period and decreased interspike-interval variability under conditions resembling an active network in vivo.


Subject(s)
Neurons/physiology , Sodium Channels/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Electrophysiology , Excitatory Postsynaptic Potentials/physiology , Membrane Potentials/physiology , Models, Neurological , Patch-Clamp Techniques , Pyramidal Cells/physiology , Rats , Synaptic Transmission/physiology , Tetrodotoxin/pharmacology
20.
J Physiol ; 566(Pt 3): 689-715, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15890705

ABSTRACT

In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting approximately 0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 microm) suppressed the mAHP following 1-5 APs evoked by current injection at -60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of APs evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the after depolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 microm) fully suppressed the mAHP at -80 mV, but had little effect at -60 mV, whereas XE991 did not measurably affect the mAHP at -80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from -60 mV, but changed the initial discharge during depolarizing pulses injected from -80 mV. In contrast to previous reports, we found that blockade of Ca2+-activated K+ channels of the SK/KCa type by apamin (100-400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage-dependent manner, as indicated by the experiments. We conclude that M- and h-channels generate the somatic mAHP in hippocampal pyramidal cells, with little or no net contribution from SK channels.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Ion Channel Gating/physiology , Ion Channels/metabolism , Long-Term Potentiation/physiology , Potassium Channels, Voltage-Gated/metabolism , Pyramidal Cells/physiology , Adaptation, Physiological/physiology , Animals , Cyclic Nucleotide-Gated Cation Channels , Feedback/physiology , Hippocampus/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , KCNQ Potassium Channels , KCNQ1 Potassium Channel , Male , Potassium Channels , Potassium Channels, Calcium-Activated/metabolism , Rats , Rats, Wistar , Small-Conductance Calcium-Activated Potassium Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...