Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 14(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392640

ABSTRACT

The treatment of osseous defects around teeth is a fundamental concern within the field of periodontology. Over the years, the method of grafting has been employed to treat bone defects, underscoring the necessity for custom-designed scaffolds that precisely match the anatomical intricacies of the bone cavity to be filled, preventing the formation of gaps that could allow the regeneration of soft tissues. In order to create such a patient-specific scaffold (bone graft), it is imperative to have a highly detailed 3D representation of the bone defect, so that the resulting scaffold aligns with the ideal anatomical characteristics of the bone defect. In this context, this article implements a workflow for designing 3D models out of patient-specific tissue defects, fabricated as scaffolds with 3D-printing technology and bioabsorbable materials, for the personalized treatment of periodontitis. The workflow is based on 3D modeling of the hard tissues around the periodontal defect (alveolar bone and teeth), scanned from patients with periodontitis. Specifically, cone beam computed tomography (CBCT) data were acquired from patients and were used for the reconstruction of the 3D model of the periodontal defect. The final step encompasses the 3D printing of these scaffolds, employing Fused Deposition Modeling (FDM) technology and 3D-bioprinting, with the aim of verifying the design accuracy of the developed methodοlogy. Unlike most existing 3D-printed scaffolds reported in the literature, which are either pre-designed or have a standard structure, this method leads to the creation of highly detailed patient-specific grafts. Greater accuracy and resolution in the macroarchitecture of the scaffolds were achieved during FDM printing compared to bioprinting, with the standard FDM printing profile identified as more suitable in terms of both time and precision. It is easy to follow and has been successfully employed to create 3D models of periodontal defects and 3D-printed scaffolds for three cases of patients, proving its applicability and efficiency in designing and fabricating personalized 3D-printed bone grafts using CBCT data.

2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571668

ABSTRACT

In the context of web augmented reality (AR), 3D rendering that maintains visual quality and frame rate requirements remains a challenge. The lack of a dedicated and efficient 3D format often results in the degraded visual quality of the original data and compromises the user experience. This paper examines the integration of web-streamable view-dependent representations of large-sized and high-resolution 3D models in web AR applications. The developed cross-platform prototype exploits the batched multi-resolution structures of the Nexus.js library as a dedicated lightweight web AR format and tests it against common formats and compression techniques. Built with AR.js and Three.js open-source libraries, it allows the overlay of the multi-resolution models by interactively adjusting the position, rotation and scale parameters. The proposed method includes real-time view-dependent rendering, geometric instancing and 3D pose regression for two types of AR: natural feature tracking (NFT) and location-based positioning for large and textured 3D overlays. The prototype achieves up to a 46% speedup in rendering time compared to optimized glTF models, while a 34 M vertices 3D model is visible in less than 4 s without degraded visual quality in slow 3D networks. The evaluation under various scenes and devices offers insights into how a multi-resolution scheme can be adopted in web AR for high-quality visualization and real-time performance.

3.
J Clin Med ; 12(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37568425

ABSTRACT

The purpose of this article is to define and implement a methodology for the 3D design of customized patient-specific scaffolds (bone grafts) for the regeneration of periodontal tissues. The prerequisite of the proposed workflow is the three-dimensional (3D) structure of the periodontal defect, i.e., the 3D model of the hard tissues (alveolar bone and teeth) around the periodontal damage, which is proposed to be generated via a segmentation and 3D editing methodology using cone beam computed tomography (CBCT) data. Two types of methodologies for 3D periodontal scaffold (graft) design are described: (i) The methodology of designing periodontal defect customized block grafts and (ii) the methodology of designing extraction socket preservation customized grafts. The application of the proposed methodology for the generation of a 3D model of the hard tissues around periodontal defects of a patient using a CBCT scan and the 3D design of the two aforementioned types of scaffolds for personalized periodontal regenerative treatment shows promising results. The outputs of this work will be used as the basis for the 3D printing of bioabsorbable scaffolds of personalized treatment against periodontitis, which will simultaneously be used as sustained-release drug carriers.

4.
Sensors (Basel) ; 23(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679393

ABSTRACT

Advances in the scientific fields of photogrammetry and computer vision have led to the development of automated multi-image methods that solve the problem of 3D reconstruction. Simultaneously, 3D scanners have become a common source of data acquisition for 3D modeling of real objects/scenes/human bodies. This article presents a comprehensive overview of different 3D modeling technologies that may be used to generate 3D reconstructions of outer or inner surfaces of different kinds of targets. In this context, it covers the topics of 3D modeling using images via different methods, it provides a detailed classification of 3D scanners by additionally presenting the basic operating principles of each type of scanner, and it discusses the problem of generating 3D models from scans. Finally, it outlines some applications of 3D modeling, beyond well-established topographic ones.


Subject(s)
Imaging, Three-Dimensional , Photogrammetry , Humans , Imaging, Three-Dimensional/methods , Photogrammetry/methods
5.
J Pers Med ; 12(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36143140

ABSTRACT

The cone beam computed tomography (CBCT) technology is nowadays widely used in the field of dentistry and its use in the treatment of periodontal diseases has already been tackled in the international literature. At the same time, advanced segmentation methods have been introduced in state-of-the-art medical imaging software and well-established automated techniques for 3D mesh cleaning are available in 3D model editing software. However, except for the application of simple thresholding approaches for the purposes of 3D modeling of the oral cavity using CBCT data for dental applications, which does not yield accurate results, the research that has been conducted using more specialized semi-automated thresholding in dental CBCT images using existing software packages is limited. This article aims to fill the gap in the state-of-the-art research concerning the usage of CBCT data for 3D modeling of the hard tissues of the oral cavity of patients with periodontitis using existing software tools, for the needs of designing and printing 3D scaffolds for periodontal regeneration. In this context, segmentation and 3D modeling workflows using dental CBCT data that belong to a patient with periodontitis are evaluated, comparisons between the 3D models of the teeth and the alveolar bone generated through the experiments that yielded the most satisfactory results are made, and an optimal and efficient methodology for creating 3D models of teeth and alveolar bone, especially for being used as the basis for generating bioabsorbable 3D printed scaffolds of personalized treatment against periodontitis, is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...