Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 31(6): 914-928, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34617103

ABSTRACT

Glycogen Storage Disease Type I (GSDI) is an inherited disease caused by glucose-6 phosphatase (G6Pase) deficiency, leading to a loss of endogenous glucose production and severe hypoglycemia. Moreover, most GSDI patients develop a chronic kidney disease (CKD) due to lipid accumulation in the kidney. Similar to diabetic CKD, activation of renin-angiotensin system (RAS) promotes renal fibrosis in GSDI. Here, we investigated the physiological and molecular effects of RAS blockers in GSDI patients and mice. A retrospective analysis of renal function was performed in 21 GSDI patients treated with RAS blockers. Cellular and metabolic impacts of RAS blockade were analyzed in K.G6pc-/- mice characterized by G6pc1 deletion in kidneys. GSDI patients started RAS blocker treatment at a median age of 21 years and long-term treatment reduced the progression of CKD in about 50% of patients. However, CKD progressed to kidney failure in 20% of treated patients, requiring renal transplantation. In K.G6pc-/- mice, CKD was associated with an impairment of autophagy and ER stress. RAS blockade resulted in a rescue of autophagy and decreased ER stress, concomitantly with decreased fibrosis and improved renal function, but without impact on glycogen and lipid contents. In conclusion, these data confirm the partial beneficial effect of RAS blockers in the prevention of CKD in GSDI. Mechanistically, we show that these effects are linked to a reduction of cell stress, without affecting metabolism.


Subject(s)
Glycogen Storage Disease Type I , Renal Insufficiency, Chronic , Animals , Female , Glucose/metabolism , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Humans , Lipids , Male , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Renin-Angiotensin System/genetics , Retrospective Studies
2.
Nat Commun ; 12(1): 3090, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035281

ABSTRACT

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Subject(s)
Disease Models, Animal , Genetic Therapy/methods , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease/therapy , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Cytokines/blood , Cytokines/metabolism , Glucose-6-Phosphatase/metabolism , Glycogen/metabolism , Glycogen Storage Disease/genetics , Glycogen Storage Disease/pathology , HeLa Cells , Humans , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Treatment Outcome , Triglycerides/metabolism
3.
Mol Metab ; 16: 100-115, 2018 10.
Article in English | MEDLINE | ID: mdl-30100243

ABSTRACT

OBJECTIVE: Ectopic lipid accumulation in the liver and kidneys is a hallmark of metabolic diseases leading to non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD). Moreover, recent data have highlighted a strong correlation between NAFLD and CKD incidences. In this study, we use two mouse models of hepatic steatosis or CKD, each initiated independently of the other upon the suppression of glucose production specifically in the liver or kidneys, to elucidate the mechanisms underlying the development of CKD in the context of NAFLD-like pathology. METHODS: Mice with a deletion of G6pc, encoding glucose-6 phosphatase catalytic subunit, specifically in the liver (L.G6pc-/- mice) or the kidneys (K.G6pc-/- mice), were fed with either a standard diet or a high fat/high sucrose (HF/HS) diet during 9 months. These mice represent two original models of a rare metabolic disease named Glycogen Storage Disease Type Ia (GSDIa) that is characterized by both NAFLD-like pathology and CKD. Two other groups of L.G6pc-/- and K.G6pc-/- mice were fed a standard diet for 6 months and then treated with fenofibrate for 3 months. Lipid and glucose metabolisms were characterized, and NAFLD-like and CKD damages were evaluated. RESULTS: Lipid depot exacerbation upon high-calorie diet strongly accelerated hepatic and renal pathologies induced by the G6pc-deficiency. In L.G6pc-/- mice, HF/HS diet increased liver injuries, characterized by higher levels of plasmatic transaminases and increased hepatic tumor incidence. In K.G6pc-/- mice, HF/HS diet increased urinary albumin and lipocalin 2 excretion and aggravated renal fibrosis. In both cases, the worsening of NAFLD-like injuries and CKD was independent of glycogen content. Furthermore, fenofibrate, via the activation of lipid oxidation significantly decreased the hepatic or renal lipid accumulations and prevented liver or kidney damages in L.G6pc-/- and K.G6pc-/- mice, respectively. Finally, we show that L.G6pc-/- mice and K.G6pc-/- mice developed NAFLD-like pathology and CKD independently. CONCLUSIONS: This study highlights the crucial role that lipids play in the independent development of both NAFLD and CKD and demonstrates the importance of lipid-lowering treatments in various metabolic diseases featured by lipid load, from the "rare" GSDIa to the "epidemic" morbid obesity or type 2 diabetes.


Subject(s)
Glucose-6-Phosphatase/metabolism , Glycogen Storage Disease Type I/metabolism , Lipid Metabolism/physiology , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/physiopathology , Glucose/metabolism , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease Type I/physiopathology , Intracellular Space , Kidney/metabolism , Lipid Accumulation Product/physiology , Lipid Metabolism/genetics , Lipids/physiology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...