Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Diabetol ; 59(9): 1169-1178, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35737141

ABSTRACT

AIMS: Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS: A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS: MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS: The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Testing , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Genetic Testing/methods , Humans , Mutation , Phenotype
2.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32017842

ABSTRACT

CONTEXT: While rare variants of the hepatocyte nuclear factor-1 alpha (HNF1A) gene can cause maturity-onset diabetes of the young (HNF1A-MODY), other variants can be risk factors for the development of type 2 diabetes. As has been suggested by the American College of Medical Genetics (ACMG) guidelines for variant interpretation, functional studies provide strong evidence to classify a variant as pathogenic. OBJECTIVE: We hypothesized that a functional evaluation can improve the interpretation of the HNF1A variants in our Czech MODY Registry. DESIGN, SETTINGS, AND PARTICIPANTS: We studied 17 HNF1A variants that were identified in 48 individuals (33 female/15 male) from 20 Czech families with diabetes, using bioinformatics in silico tools and functional protein analyses (transactivation, protein expression, DNA binding, and nuclear localization). RESULTS: Of the 17 variants, 12 variants (p.Lys120Glu, p.Gln130Glu, p.Arg131Pro, p.Leu139Pro, p.Met154Ile, p.Gln170Ter, p.Glu187SerfsTer40, p.Phe215SerfsTer18, p.Gly253Arg, p.Leu383ArgfsTer3, p.Gly437Val, and p.Thr563HisfsTer85) exhibited significantly reduced transcriptional activity or DNA binding (< 40%) and were classified as (likely) pathogenic, 2/17 variants were (likely) benign and 3/17 remained of uncertain significance. Functional analyses allowed for the reclassification of 10/17 variants (59%). Diabetes treatment was improved in 20/29 (69%) carriers of (likely) pathogenic HNF1A variants. CONCLUSION: Functional evaluation of the HNF1A variants is necessary to better predict the pathogenic effects and to improve the diagnostic interpretation and treatment, particularly in cases where the cosegregation or family history data are not available or where the phenotype is more diverse and overlaps with other types of diabetes.


Subject(s)
Biomarkers/analysis , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/pathology , Hepatocyte Nuclear Factor 1-alpha/genetics , Mutation , Adult , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Follow-Up Studies , Humans , Male , Phenotype , Prognosis
3.
Eur J Med Genet ; 58(4): 230-4, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25721872

ABSTRACT

Mutations in the insulin (INS) gene rarely occur in patients with Maturity-Onset Diabetes of the Young (MODY). We aimed to describe in detail two MODY families with INS mutations. The INS gene was screened by direct sequencing. The probands and their affected relatives underwent a mixed-meal test. Mutation predictions were modeled using I-TASSER and were visualized by Swiss-PdbViewer. A novel heterozygous frameshift mutation p.Gln78fs in the INS gene was found in three generations of patients with clinically distinct diabetes. The single nucleotide deletion (c.233delA) is predicted to change and prolong amino acid sequence, resulting in aberrant proinsulin without native structures of C-peptide and A-chain. In the second family, the heterozygous mutation c.188-31G>A within the terminal intron was detected. The mother and her daughter were misdiagnosed as having type 1 diabetes since the ages of 6 and 2 years, respectively. This result is in contrast to the previously described carrier of the same mutation who was diagnosed with permanent neonatal diabetes. We identified a novel coding frameshift mutation and an intronic mutation in the INS gene leading to childhood-onset diabetes. INS mutations may result in various phenotypes, suggesting that additional mechanisms may be involved in the pathogenesis and clinical manifestation of diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Frameshift Mutation/genetics , Insulin/genetics , Adult , Aged , Amino Acid Sequence , Base Sequence , C-Peptide/genetics , Family , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA
4.
Pediatr Diabetes ; 13(6): 489-98, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22332836

ABSTRACT

BACKGROUND: Although the literature indicates that ancestral mutations in the glucokinase (GCK) gene are rare, we have detected a high frequency of four prevalent mutations that together are responsible for over one third of the GCK mutations in our Czech National Register of monogenic diabetes. Therefore, we studied their potential ancestral origin in our and neighbouring Polish populations. METHODS: We analysed the lineage of four mutations in the GCK gene - p.Glu40Lys (21 apparently unrelated families), p.Leu315His (15 families), p.Gly318Arg (26 families), and p.Val33Ala (10 families) - using genotypes of 16 single nucleotide polymorphisms that span a 14 Mb region around the gene. Haplotypes were reconstructed using Phase and Haploview programmes, and their age was estimated using dmle+. RESULTS: We found strong evidence that supports ancestral origin of three of the four mutations: the p.Glu40Lys mutation was associated with an 11-marker long conserved haplotype, the p.Leu315His mutation was associated with a 7-marker haplotype, and the p.Gly318Arg mutation was associated with an 8-marker haplotype. None of these haplotypes were detected in the general population with a frequency >0.5%. The ages of the mutations were roughly estimated to be between 82 and 110 generations old (95% credible sets 65-151). The fourth prevalent mutation, p.Val33Ala, lacked statistically significant evidence for the founder effect, although there were some indications for its common origin. CONCLUSIONS: The large proportion of families carrying three ancestral mutations in GCK indicates that the previously assumed rarity of the founder effect with regard to GCK-maturity onset diabetes of the young (MODY) should be reconsidered.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucokinase/genetics , Mutation , Adolescent , Adult , Czech Republic/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Family , Female , Founder Effect , Genotype , Humans , Inheritance Patterns/genetics , Male , Mutation/physiology , Pedigree , Poland/epidemiology , Polymorphism, Single Nucleotide , Registries , Young Adult
5.
Fetal Diagn Ther ; 20(4): 275-80, 2005.
Article in English | MEDLINE | ID: mdl-15980640

ABSTRACT

OBJECTIVE: In this prospective study, we assessed the feasibility of foetal RHD genotyping by analysis of DNA extracted from plasma samples of Rhesus (Rh) D-negative pregnant women using real-time PCR and primers and probes targeted toward exon 7 and 10 of RHD gene. METHODS: We analysed 24 RhD-negative pregnant woman and 4 patients with weak D phenotypes at a gestational age ranging from 11th to 38th week of gestation and correlated the results with serological analysis of cord blood after the delivery. RESULTS: Non-invasive prenatal foetal RHD exon 7 genotyping analyses of maternal plasma samples was in complete concordance with the serological analysis of cord blood in all 24 RhD-negative pregnant women delivering 12 RhD-positive and 12 RhD-negative newborns. RHD exon-10-specific PCR amplicons were not detected in 2 out of 12 studied plasma samples from women bearing RhD-positive foetus, despite the positive amplification in RHD exon 7 region observed in all cases. In 1 case red cell serology of cord blood revealed that the mother had D-C-E-c+e+ C(w)- and the infant D+C-E-c+e+ C(w)+ phenotypes. RhD exon 10 real-time PCR analysis of cord blood was also negative. These findings may reflect that DC(w)- paternally inherited haplotype probably possesses no RHD exon 10. In another case no cord blood sample has been available for additional studies. The specificity of both RHD exon 7 and 10 systems approached 100% since no RhD-positive signals were detected in women currently pregnant with RhD-negative foetus (n = 8). Using real-time PCR and DNA isolated from maternal plasma, we easily differentiated pregnant woman whose RBCs had a weak D phenotype (n = 4) from truly RhD-negative patients since the threshold cycle (C(T)) for RHD exon 10 or 7 amplicons reached nearly the same value like C(T) for control beta-globin gene amplicons detecting the total DNA present in maternal plasma. However in these cases foetal RhD status cannot be determined. CONCLUSION: Prediction offoetal RhD status from maternal plasma is highly accurate and enables implementation into clinical routine. We suggest that safe non-invasive prenatal foetal RHD genotyping using maternal plasma should involve the amplification of at least two RHD-specific products.


Subject(s)
Fetal Diseases/diagnosis , Fetal Diseases/genetics , Prenatal Diagnosis/methods , Rh-Hr Blood-Group System/genetics , Exons/genetics , Female , Fetal Diseases/blood , Genotype , Humans , Maternal-Fetal Exchange , Pregnancy , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Rh-Hr Blood-Group System/blood
6.
J Histochem Cytochem ; 53(3): 301-5, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15750007

ABSTRACT

We assessed the feasibility of fetal RHD and RHCE genotyping by analysis of DNA extracted from plasma samples of RhD-negative pregnant women using real-time PCR and primers and probes targeted toward RHD and RHCE genes. We analyzed 45 pregnant women in the 11th to 40th weeks of pregnancy and correlated the results with serological analysis of cord blood after delivery. Non-invasive prenatal fetal RHD exon 7, RHD exon 10, RHCE exon 2 (C allele), and RHCE exon 5 (E allele) genotyping analysis of maternal plasma samples was correctly performed in 45 out of 45 RhD-negative pregnant women delivering 24 RhD-, 17 RhC-, and 7 RhE-positive newborns. Detection of fetal RHD and the C and E alleles of RHCE gene from maternal plasma is highly accurate and enables implementation into clinical routine. We recommend performing fetal RHD and RHCE genotyping together with fetal sex determination in alloimmunized D-negative pregnancies at risk of hemolytic disease of the newborn. In case of D-negative fetus, amplification of another paternally inherited allele (SRY and/or RhC and/or RhE positivity) proves the presence of fetal DNA in maternal circulation.


Subject(s)
Fetal Blood/immunology , Rh-Hr Blood-Group System/genetics , Blood Grouping and Crossmatching , Female , Genotype , Humans , Male , Polymerase Chain Reaction , Pregnancy , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...