Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168751, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008314

ABSTRACT

Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.


Subject(s)
Endocrine Disruptors , Food Chain , Animals , Ecosystem , Climate Change , Insecta/physiology , Fresh Water , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Water , Pharmaceutical Preparations
2.
Sci Total Environ ; 838(Pt 2): 156208, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35618119

ABSTRACT

Environmental fate of emerging contaminants such as pharmaceuticals and endocrine disrupting compounds at the aquatic terrestrial boundary are largely unexplored. Aquatic insects connect aquatic and terrestrial food webs as their life cycle includes aquatic and terrestrial life stages, thus they represent an important inter-habitat linkage not only for energy and nutrient flow, but also for contaminant transfer to terrestrial environments. We measured the concentrations of pharmaceuticals and endocrine disrupting compounds in the larval and adult tissues (last larval stages and teneral adults) of five Odonata species sampled in a wastewater-impacted river, in order to examine their bioaccumulation and bioamplification at different taxonomic levels. Twenty different compounds were bioaccumulated in insect tissues, with majority having higher concentrations (up to 90% higher) in aquatic larvae compared to terrestrial adults (reaching 88 ng/g for 1H-benzotriazole). However, increased concentration in adults was observed for seven compounds in at least one suborder (41% of the accumulated), confirming contaminants bioamplification across the metamorphosis. Both, bioaccumulation and bioamplification differed at various taxa levels; the order (Odonata), suborder (Anisoptera and Zygoptera) and species level. Highest variability was observed between Anisoptera and Zygoptera, due to the underlying differences in their ecology. Generally, Zygoptera had higher concentrations of contaminants in both larvae and adults. Additionally, we aimed at predicting effects of contaminant properties on bioaccumulation and bioamplification patterns using the commonly used physicochemical and pharmacokinetic descriptors on both order and suborder levels, however, neither of the two processes could be consistently predicted with simple linear models. Our study highlights the importance of taxonomy in studies aiming at advancing the understanding of contaminant exchange between aquatic and terrestrial food webs, as higher taxonomic categories include ecologically diverse groups, whose contribution to "the dark side of subsidies" could substantially differ.


Subject(s)
Endocrine Disruptors , Odonata , Animals , Bioaccumulation , Food Chain , Insecta , Pharmaceutical Preparations , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...