Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Geochem Health ; 45(12): 9525-9540, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37024708

ABSTRACT

The quality and vitality of cities largely depend on the design, management, and maintenance of green areas, including urban protected areas (UPAs), since they provide multiple benefits for the city. Due to urbanization and higher anthropogenic pressure, green areas are decreasing which directly affects natural habitats and biodiversity. This study aims to assess soil and vegetation chemical status in UPAs in the city of Belgrade, Serbia, and to understand how their distance from pollution hotspots affects soil and vegetation quality. Additionally, this paper considers the inclusion of soil and vegetation conditions in the urban protected areas management as a basis for introducing a connectivity approach to expand green infrastructure throughout the city. Chemical properties, the content of nutrients (C, N, P, and K), and microelements (Cr, Co, Ni, Cu, Zn, As, Cd, Sn, Pb, Zr, U, and Th) in soil and conifer needles were analyzed. Results showed that the distance of pollution hotspots does not affect nutrient and microelements concentrations in soil, i.e., they do not vary significantly between sites and do not exceed remediation intervention values. However, the microelements status of vegetation is affected since Cr, Cu, Zn, Sn, and Pb are higher in needles from trees from the city center. The state of soil and plant composition supports the establishment of a network of green corridors and should become a part of management strategies, thus helping biodiversity protection, climate change mitigation, and human well-being in the cities.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/analysis , Environmental Monitoring/methods , Soil/chemistry , Lead , Soil Pollutants/analysis , Cities , China
2.
Chemosphere ; 309(Pt 1): 136662, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36195127

ABSTRACT

The main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution; (iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Herzegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured by X-ray fluorescence spectroscopy (XRF). The content of heavy metals was measured by inductively coupled plasma-optical emission spectrometry (ICP/OES). Heavy metals had a specific concentration range, which followed in soil samples from depth 0-40 cm the common order (low to high): Hg < Cd < As < Co < Pb < Ni < Cu < Cr < Zn, and from depth 40-80 cm: Hg < Cd < As < Pb < Co < Ni < Cu < Cr < Zn. The grouping of the examined parameters according to rock types, soil types, and localities indicated the separation of carbonate rocks from other substrates, luvisol, and rendzina from other soil types, and samples from BA, SL, and IT from other localities. According to sources apportionment As, Pb and Zn are of anthropogenic origin, Cd, Co, Cr, and Ni are of geogenic origin, while the middle position of Cu and Hg indicates a combined contribution of both sources. Elements Cd and Hg indicated severe to extremely severe enrichment with a mean value of 24.3 and 70.6, respectively. Based on the determined values Ni, Cr, As and Cd do not pose a health risk.


Subject(s)
Fagus , Mercury , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Forests , Carbonates/analysis , Mercury/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL