Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570092

ABSTRACT

The phase structure and composition of a series of four alloys based on Fe3Al was investigated by means of scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The materials were composed of Fe and Al with a fixed ratio of 3:1 alloyed with V, Cr and Ni at 8, 12, 15 and 20 at. % each (composition formula: Fe3(100-3x)/4 Al(100-3x)/4VxCrxNix). For 8% alloying, the material is single-phase D03. Furthermore, 12 and 15% alloying results in bcc-B2 phase separation on two length scales. Moreover, 20% alloying gives rise to the FeNiCrV σ phase supplemented by B2. These findings are discussed with respect to the results obtained via Calphad modeling using the TCHEA5 database and can serve in further improvement.

2.
Materials (Basel) ; 16(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837007

ABSTRACT

The creep properties of a laser-directed energy deposition (L-DED) technique manufactured Inconel 718 (IN718) was investigated at 650 °C/700 MPa. Microstructure and creep properties of L-DED IN718 samples were tailored by various post heat treatments involving homogenization heat treatment with temperature ranging from 1080 to 1180 °C + double aging and hot isostatic pressing (HIP). Microstructural changes and their influence on the creep behavior and fracture mechanism were observed and discussed. The results show that L-DED sample heat treated by a simple double aging exhibits a 49% increase in creep lifetime tr and a comparable creep elongation ɛf when compared to the wrought material, due to the reserved coarse dislocation cell substructure from the L-DED process. The loss of dislocation cell structure and the coarsening of grains at higher temperature of heat treatments contributes to a shorter tr, εf, but faster ε̇min (minimum creep rate). The present work demonstrates that a simultaneous improvement of creep strength and creep elongation can be achieved in the case of a coarse-grained L-DED IN718 by a double aging treatment which can preserve both the strengthening precipitates and an appropriate size of dislocation cells.

3.
Materials (Basel) ; 16(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36770305

ABSTRACT

Two novel ignition-resistant magnesium alloys, Mg-2Gd-2Y-1Ca and Mg-2Nd-1Y-1Ca, were prepared in the ultrafine-grain condition by equal channel angular pressing (ECAP). In addition, four commercial alloys-AZ31, AX41, AE42 and WE43-were prepared similarly as a reference. The microstructure, mechanical properties and ignition temperature were thoroughly investigated. Both novel alloys exhibited a mean grain size of ~1 µm and dense distribution of small secondary phase particles. The mechanical strength measured by the tensile deformation test showed that the novel alloys are much stronger (~290 MPa) than all commercial alloys except WE43. However, Ca segregation into the grain boundaries caused a significant decrease in ductility (<6%). The ignition temperature of the novel alloys (~950 °C) was considerably improved by the presence of Gd/Nd, Y and Ca. This study showed that both novel alloys exhibit high strength and high ignition temperature in the ultrafine-grain condition.

4.
Nanoscale ; 15(7): 3351-3365, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722767

ABSTRACT

Photoluminescent gold nanoclusters are widely seen as a promising candidate for applications in biosensing and bioimaging. Although they have many of the required properties, such as biocompatibility and photostability, the luminescence of near infrared emitting gold nanoclusters is still relatively weak compared to the best available fluorophores. This study contributes to the ongoing debate on the possibilities and limitations of improving the performance of gold nanoclusters by combining them with plasmonic nanostructures. We focus on a detailed description of the emission enhancement and compare it with the excitation enhancement obtained in recent works. We prepared a well-defined series of gold nanoclusters attached to gold nanorods whose plasmonic band is tuned to the emission band of gold nanoclusters. In the resultant single-element hybrid nanostructure, the gold nanorods control the luminescence of gold nanoclusters in terms of its spectral position, polarization and lifetime. We identified a range of parameters which determine the mutual interaction of both particles including the inter-particle distance, plasmon-emission spectral overlap, dimension of gold nanorods and even the specific position of gold nanoclusters attached on their surface. We critically assess the practical and theoretical photoluminescence enhancements achievable using the above strategy. Although the emission enhancement was generally low, the observations and methodology presented in this study can provide a valuable insight into the plasmonic enhancement in general and into the photophysics of gold nanoclusters. We believe that our approach can be largely generalized for other relevant studies on plasmon enhanced luminescence.

5.
Phys Chem Chem Phys ; 25(4): 2803-2809, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36412107

ABSTRACT

This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during the sputtering onto liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for the preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6-33.1 mJ m-2 at RT). It was found that well-dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C), while a gold film forms onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs is in the range of about 2.1-2.5 nm according to transmission electron microscopy.

6.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363162

ABSTRACT

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.

7.
Nanoscale ; 14(8): 3166-3178, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35142320

ABSTRACT

Photoluminescent (PL) gold nanoclusters (AuNCs) show many advantages over conventional semiconductor quantum dots, however, their application potential is limited by their relatively low absorption cross-section and quantum yield. Plasmonic enhancement is a common strategy for improving the performance of weak fluorophores, yet in the case of AuNCs this method is still poorly explored. Here a robust synthetic approach to a compact plasmonic nanostructure enhancing significantly the PL of AuNCs is presented. Two gold nanostructures, AuNCs and plasmonic gold nanorods (AuNRs), are assembled in a compact core-shell nanostructure with tunable geometry and optical properties. The unprecedented degree of control over the structural parameters of the nanostructure allows to study the effects of several parameters, such as excitation wavelength, AuNC-AuNR distance, and relative loading of AuNCs per single AuNR. Consequently, a more general method to measure and evaluate enhancement independently of the absolute particle concentrations is introduced. The highest PL intensity enhancement is obtained when the excitation wavelength matches the strong longitudinal plasmonic band of the AuNRs and when the separation distance between AuNCs and AuNRs decreases to 5 nm. The results presented are relevant for the application of AuNCs in optoelectronic devices and bioimaging.

8.
Materials (Basel) ; 14(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34947364

ABSTRACT

Aluminium steel clad materials have high potential for industrial applications. Their mechanical properties are governed by an intermetallic layer, which forms upon heat treatment at the Al-Fe interface. Transmission electron microscopy was employed to identify the phases present at the interface by selective area electron diffraction and energy dispersive spectroscopy. Three phases were identified: orthorhombic Al5Fe2, monoclinic Al13Fe4 and cubic Al19Fe4MnSi2. An effective interdiffusion coefficient dependent on concentration was determined according to the Boltzmann-Matano method. The highest value of the interdiffusion coefficient was reached at the composition of the intermetallic phases. Afterwards, the process of diffusion considering the evaluated interdiffusion coefficient was simulated using the finite element method. Results of the simulations revealed that growth of the intermetallic phases proceeds preferentially in the direction of aluminium.

9.
Nanoscale ; 13(9): 5045-5057, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33646226

ABSTRACT

The great application potential of photoluminescent silicon nanocrystals, especially in biomedicine, is significantly reduced due to their limited radiative rate. One of the possible ways to overcome this limitation is enhancing the luminescence by localized plasmons of metallic nanostructures. We report an optimized fabrication of gold nanorod - silicon nanocrystal core-shell nanoparticles with the silica shell as a tunable spacer. The unprecedented structural quality and homogeneity of our hybrid nanoparticles allows for detailed analysis of their luminescence. A strong correlation between dark field scattering and luminescence spectra is shown on a single particle level, indicating a dominant role of the longitudinal plasmonic band in luminescence enhancement. The spacer thickness dependence of photoluminescence intensity enhancement is investigated using a combination of experimental measurements and numerical simulations. An optimal separation distance of 5 nm is found, yielding a 7.2× enhancement of the luminescence intensity. This result is mainly attributed to an increased quantum yield resulting from the Purcell enhanced radiative rate in the nanocrystals. The ease of fabrication, low cost, long-term stability and great emission properties of the hybrid nanoparticles make them a great candidate for bio-imaging or even targeted cancer treatment.

10.
Nanoscale Adv ; 3(16): 4780-4789, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-36134317

ABSTRACT

We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.

11.
Nanotechnology ; 31(45): 455303, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32726767

ABSTRACT

Effective methods for the synthesis of high-purity nanoparticles (NPs) have been extensively studied for a few decades. Among others, cold plasma-based sputtering metals onto a liquid substrate appears to be a very promising technique for the synthesis of high-purity NPs. The process enables the production of very small NPs without using any toxic reagents and complex chemical synthesis routes, and enables the synthesis of alloy NPs which can be the first step towards the formation of porous NPs. In this paper, the synthesis of gold-copper alloy NPs has been performed by co-sputtering gold and copper targets over pentaerythritol ethoxylate. The resulting solutions contain a mixture of gold, copper oxide, and alloy NPs having a radius of few angstroms. The annealing of these NPs, inside the solution, has been performed in order to increase their size and further induce the dealloying of the Au-Cu NPs. The resulting NPs exhibit either a nanoporous structure or are self-organized in an agglomerate of small NPs.

12.
Nanomaterials (Basel) ; 10(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168923

ABSTRACT

We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.

13.
Nanomaterials (Basel) ; 9(8)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349688

ABSTRACT

Layered-graphene reinforced-metal matrix nanocomposites with excellent mechanical properties and low density are a new class of advanced materials for a broad range of applications. A facile three-step approach based on ultra-sonication for dispersion of graphene nanosheets (GNSs), ball milling for Al-powder mixing with different weight percentages of GNSs, and equal-channel angular pressing for powders' consolidation at 200 °C was applied for nanocomposite fabrication. The Raman analysis revealed that the GNSs in the sample with 0.25 wt.% GNSs were exfoliated by the creation of some defects and disordering. X-ray diffraction and microstructural analysis confirmed that the interaction of the GNSs and the matrix was almost mechanical, interfacial bonding. The density test demonstrated that all samples except the 1 wt.% GNSs were fully densified due to the formation of microvoids, which were observed in the scanning electron microscope analysis. Investigation of the mechanical properties showed that by using Al powders with commercial purity, the 0.25 wt.% GNS sample possessed the maximum hardness, ultimate shear strength, and uniform normal displacement in comparison with the other samples. The highest mechanical properties were observed in the 0.25 wt.% GNSs composite, resulting from the embedding of exfoliated GNSs between Al powders, excellent mechanical bonding, and grain refinement. In contrast, agglomerated GNSs and the existence of microvoids caused deterioration of the mechanical properties in the 1 wt.% GNSs sample.

14.
Materials (Basel) ; 11(4)2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29614046

ABSTRACT

The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C.

15.
Materials (Basel) ; 10(9)2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28930192

ABSTRACT

The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder's microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder.

16.
J Appl Crystallogr ; 50(Pt 2): 369-377, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28381969

ABSTRACT

The twin distribution in topological insulators Bi2Te3 and Bi2Se3 was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample. By comparing bulk- and surface-sensitive measurements of the same area, buried twin domains not visible on the surface are identified. The lateral twin domain size is found to increase with the film thickness.

17.
J Appl Crystallogr ; 48(Pt 2): 393-400, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25844077

ABSTRACT

Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...