Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37421014

ABSTRACT

Due to constant advancements in materials research, conductive textile-based materials have been used increasingly in textile-based wearables. However, due to the rigidity of electronics or the need for their encapsulation, conductive textile materials, such as conductive yarns, tend to break faster around transition areas than other parts of e-textile systems. Thus, the current work aims to find the limits of two conductive yarns woven into a narrow fabric at the electronics encapsulation transition point. The tests consisted of repeated bending and mechanical stress, and were conducted using a testing machine built from off-the-shelf components. The electronics were encapsulated with an injection-moulded potting compound. In addition to identifying the most reliable conductive yarn and soft-rigid transition materials, the results examined the failure process during the bending tests, including continuous electrical measurements.

2.
ACS Sens ; 6(3): 896-907, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33499590

ABSTRACT

This work explores the feasibility of coupling two different techniques, the impedance and the transient plane source (TPS) principle, to quantify the moisture content and its compositional parameters simultaneously. The sensor is realized directly on textiles with the use of printing and coating technology. Impedance measurements use the fluid's electrical properties, while the TPS measurements are based on the thermal effusivity of the liquid. Impedance and TPS measurements show equal competency in measuring the fluid volume with a lowest measurable quantity of 0.5 µL, enabling ultralow volume passive measurements for sweat analysis. Both sensor principles were tested by monitoring the drying of a wet cloth and the measurements show perfect repeatability and accuracy. Nevertheless, when the biofluid property changes, the TPS sensor does not reflect this information on its readings, whereas, on the other hand, impedance can provide information on compositional changes. However, since the volume of the fluid changes simultaneously, one cannot differentiate between a volume change and a compositional change from impedance measurements alone. Therefore, we show in this work that we can apply impedance to measure the compositional properties; meanwhile, the TPS measurements accurately carry out volume measurements irrespective of the interferences from its compositional variations. To prove this, both of these techniques are applied for the quantification and composition monitoring of sweat, showing the capability to measure moisture content and compositional parameters simultaneously. TPS measurements can also be an indicator of the local temperature of the medium confined by the sensor, and it does not influence the fluid parameters. Compiling both impedance and thermal sensors in a single platform triggers smart wearable prospects of metering the liquid volume and simultaneously analyzing other compositional changes and body temperature. Finally, the repeatability and stability of the sensor readings and the washability of the device are tested. This device could be a potential sensing tool in real-life applications, such as wound monitoring and sweat analysis, and could be a promising addition toward future smart wearable sensors.


Subject(s)
Body Fluids , Wearable Electronic Devices , Electric Impedance , Sweat , Textiles
3.
Sensors (Basel) ; 22(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009699

ABSTRACT

Electronic textiles (e-textiles) and wearable computing have been emerging increasingly during the last decade. Since the market interest and predictions have grown, the research into increasing reliability and durability of wearables and e-textiles is developing rapidly. The washability of different integration methods and resistance to mechanical stress are the main obstacles being tackled. However, the freedom of movement and overall comfort is still often overlooked during the development phase. It is essential to see the e-textile product as a whole and consider several aspects of user experience. This work will focus on developing and improving the thermoplastic polyurethane (TPU) lamination integration method for e-textiles. In the work, a stretchable copper-polyimide based circuit was laminated onto knit fabric using various TPU films and stacks. The study shares measurable characteristics to determine which material assembly and design would ensure the highest durability for the electronics part without losing its original textile softness, flexibility and stretchability.


Subject(s)
Polyurethanes , Wearable Electronic Devices , Electronics , Reproducibility of Results , Textiles
4.
Sensors (Basel) ; 22(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35009765

ABSTRACT

Smart textiles have found numerous applications ranging from health monitoring to smart homes. Their main allure is their flexibility, which allows for seamless integration of sensing in everyday objects like clothing. The application domain also includes robotics; smart textiles have been used to improve human-robot interaction, to solve the problem of state estimation of soft robots, and for state estimation to enable learning of robotic manipulation of textiles. The latter application provides an alternative to computationally expensive vision-based pipelines and we believe it is the key to accelerate robotic learning of textile manipulation. Current smart textiles, however, maintain wired connections to external units, which impedes robotic manipulation, and lack modularity to facilitate state estimation of large cloths. In this work, we propose an open-source, fully wireless, highly flexible, light, and modular version of a piezoresistive smart textile. Its output stability was experimentally quantified and determined to be sufficient for classification tasks. Its functionality as a state sensor for larger cloths was also verified in a classification task where two of the smart textiles were sewn onto a piece of clothing of which three states are defined. The modular smart textile system was able to recognize these states with average per-class F1-scores ranging from 85.7 to 94.6% with a basic linear classifier.


Subject(s)
Robotics , Textiles , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...