Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Robot ; 9(4): 639-656, 2022 08.
Article in English | MEDLINE | ID: mdl-34705572

ABSTRACT

Numerous recent advances in robotics have been inspired by the biological principle of tensile integrity-or "tensegrity"-to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension. Local rigidity along the struts provides support to carry electronics and scientific payloads, while global compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts and prevent damage. Numerous techniques have been proposed for designing and simulating tensegrity robots, giving rise to a wide range of locomotion modes, including rolling, vibrating, hopping, and crawling. In this study, we review progress in the burgeoning field of tensegrity robotics, highlighting several emerging challenges, including automated design, state sensing, and kinodynamic motion planning.


Subject(s)
Robotics , Electronics , Locomotion , Motion , Robotics/methods
2.
Front Robot AI ; 5: 67, 2018.
Article in English | MEDLINE | ID: mdl-33500946

ABSTRACT

We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 kg robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajallooeian, 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. The robot's locomotion capabilities are shown in several scenarios. Specifically, its spring-loaded pantographic leg design compensates for overdetermined body and leg postures, i.e., during turning maneuvers, locomotion outdoors, or while going up and down slopes. The robot's active degree of freedom allow tight and swift direction changes, and turns on the spot. Presented hardware experiments are conducted in an open-loop manner, with little control and computational effort. For more versatile locomotion control, Oncilla-robot can sense leg joint rotations, and leg-trunk forces. Additional sensors can be included for feedback control with an open communication protocol interface. The robot's customized actuators are designed for robust actuation, and efficient locomotion. It trots with a cost of transport of 3.2 J/(Nm), at a speed of 0.63 m s-1 (Froude number 0.25). The robot trots inclined slopes up to 10°, at 0.25 m s-1. The multi-body Webots model of Oncilla robot, and Oncilla robot's extensive software architecture enables users to design and test scenarios in simulation. Controllers can directly be transferred to the real robot. Oncilla robot's blueprints are open-source published (hardware GLP v3, software LGPL v3).

3.
Biol Cybern ; 107(3): 309-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23463501

ABSTRACT

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.


Subject(s)
Gait/physiology , Motion , Robotics , Walking/physiology , Animals , Biomechanical Phenomena , Exercise Test , Horses/physiology , Humans , Models, Biological , Principal Component Analysis
4.
J Integr Neurosci ; 11(1): 87-101, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22744785

ABSTRACT

In this work we present a new mechatronic platform for measuring behavior of nonhuman primates, allowing high reprogrammability and providing several possibilities of interactions. The platform is the result of a multidisciplinary design process, which has involved bio-engineers, developmental neuroscientists, primatologists, and roboticians to identify its main requirements and specifications. Although such a platform has been designed for the behavioral analysis of capuchin monkeys (Cebus apella), it can be used for behavioral studies on other nonhuman primates and children. First, a state-of-the-art principal approach used in nonhuman primate behavioral studies is reported. Second, the main advantages of the mechatronic approach are presented. In this section, the platform is described in all its parts and the possibility to use it for studies on learning mechanism based on intrinsic motivation discussed. Third, a pilot study on capuchin monkeys is provided and preliminary data are presented and discussed.


Subject(s)
Behavior Therapy/instrumentation , Behavior, Animal/physiology , Behavioral Sciences/instrumentation , Animals , Behavior Therapy/methods , Cebus
SELECTION OF CITATIONS
SEARCH DETAIL
...